
Graph Neural Network Forecasting in
Electric Power Systems

Gustav Marklund Brinell

Spring 2024

Master’s Thesis

Master of Science in Engineering Physics

Graph Neural Network Forecasting in Electric Power Systems

Author: Gustav Marklund Brinell gustavmb@live.se

Supervisors: Natallia Lundqvist Svenska kraftnät

Eva Krämer Department of Physics

Examiner: Jonas Westin Department of Mathematics

and Mathematical Statistics

Master’s Thesis in Engineering Physics, 30 ECTS

Department of Physics

Umeå University

Copyright © 2024. All Rights Reserved.

ii

Abstract

This thesis explores the application of Graph Neural Networks (GNNs) for forecasting net-positions in the

Nordic electricity market. Two GNN architectures, Gated Recurrent Unit Graph Convolutional Network

(GRU-GCN) and Fourier Graph Neural Network (FGNN), were evaluated and compared to the existing

forecasting model employed in the power grid. Results demonstrate that both GNN models achieve com-

petitive performance, highlighting their potential for leveraging the graph structure inherent in power grids.

However, regional variations in forecast uncertainty and the impact of data quality and disruptions necessitate

further research. This thesis contributes to the understanding of GNNs in power grid forecasting and iden-

tifies future research directions, such as developing interpretable GNN models and incorporating additional

data sources, to enhance the accuracy and reliability of power grid operations.

Sammanfattning

Denna avhandling undersöker tillämpningen av grafneurala nätverk (GNN) för att prognostisera nettoposi-

tioner inom den nordiska elmarknaden. Två GNN-arkitekturer, Gated Recurrent Unit Graph Convolutional

Network (GRU-GCN) och Fourier Graph Neural Network (FGNN), utvärderades och jämfördes med den

befintliga prognosmodellen i elnätet. Resultaten visar att båda GNN-modellerna uppnår konkurrenskraftig

prestanda, vilket framhäver deras potential att utnyttja den grafiska struktur som finns i elnät. Regionala

variationer i prognososäkerhet och påverkan av datakvalitet och störningar kräver dock ytterligare forskning.

Denna avhandling bidrar till förståelsen av GNN inom elnätsprognostisering och identifierar framtida forskn-

ingsinriktningar, såsom att utveckla tolkningsbara GNN-modeller och inkorporera ytterligare datakällor, för

att förbättra noggrannheten och tillförlitligheten i elnätsdriften.

iii

Contents

1 Introduction 1

1.1 Our approach . 2

1.2 Structure . 2

2 Methodology and Theoretical Foundation 4

2.1 Definitions of Graph-Structured Data . 4

2.2 Machine Learning . 6

2.3 Neural Networks . 7

2.4 Optimization . 9

2.5 Uncertainty Metrics . 9

2.6 Graph Neural Networks . 11

2.6.1 GRU-GCN . 11

2.6.2 Fourier Graph Neural Network . 14

3 Numerical Experiments 17

3.1 Experiments GRU-GCN . 18

3.2 Experiments with FGNN . 23

3.3 ModelX . 27

4 Discussion & Conclusion 35

iv

1 INTRODUCTION

Chapter 1

Introduction

Modern society is dependent on electricity which requires a stable power supply. With the green

transition, the renewable power production has increased changing load patterns, which means that

the condition for stable and safe operation of the system have changed. A consequence of this is that

previous decision support systems for power system operation need to be supplemented with data-

driven tools for forecasts of various kinds. These forecasts range from consumption in specific

price ranges to power flows in individual components. The extensive data sets usually include

technical information from the power system itself, as well as data from surrounding sources such

as wind, solar radiation and temperature. To make these forecasting tools more efficient, it becomes

essential to take advantage of prior knowledge of the underlying structures in the extensive data set.

Within the electric power system, such a clear structure emerges in the form of stations and lines

in the power grid. By using these underlying structures, one can potentially improve the precision

and reliability of the forecasts.

Balancing electricity production and consumption is crucial for a stable power grid. Weather fluc-

tuations affect both supply (e.g., wind, hydro) and demand (e.g., heating). Sweden is divided into

four bidding areas where electricity is traded on a market. Prices in each area depend on local sup-

ply and demand, as well as limitations in transmitting power between regions. This system allows

for efficient electricity flow from surplus areas in northern Sweden to areas with higher demand in

the south [9]. Northern areas usually have a positive net-position (difference between electricity

production and use) with excess electricity production, while southern areas have a negative net-

position with higher consumption. The electricity market is designed according to the conditions

in the physical power grid, i.e. how much can be transferred at a given time between the areas

[4]. Therefore, an important task is to make forecasts in the electricity market to get an idea of the

balance in the physical power grid.

1

1 INTRODUCTION

1.1 Our approach

Traditionally, forecasts rely on unstructured tabular data that only considers temporal dependencies.

This project explores the potential of using Graph Neural Networks (GNNs) for forecasting in the

power grid. This approach captures both the temporal and spatial dependencies.

The goal of the project is to evaluate GNNs for power grid forecasting, where we will assess the

potential and limitations of GNNs for forecasting net-positions in the Nordic electricity market.

GNNs offer a unique advantage in their ability to handle the inherent network structure of the

power grid, potentially leading to more accurate forecasts. We will develop GNN models and train

them using real-world data to forecast hourly net-positions in each of the electricity areas. These

areas are usually referred to as bidding zones, which we will now keep consistent throughout this

thesis. The topological structure of these bidding zones can be seen in Figure 1, where Sweden’s

four bidding zones (SE1-SE4) are labeled in the figure.

1.2 Structure

We begin by establishing the fundamental theory of graph-structured data in Chapter 2. We then

explore the essential principles of machine learning and neural networks, before diving into the

specific theory of the GNNs utilized in this work. Chapter 3 transitions from theory to practice,

presenting the results of numerical experiments where the proposed GNN models are compared

and evaluated. Finally, Chapter 4 concludes the thesis by summarizing the findings, discussing

potential limitations, and outlining possible avenues for future research.

2

1 INTRODUCTION

Figure 1: This figure depicts the Nordic bidding zones. Physical connections between zones are highlighted,

forming a graphical structure. Each zone is represented by a node, and the connections between them

represent edges. The following details the country affiliation of each zone: SE1 to SE4: Sweden; 5 to 9:

Norway; 10: Finland; 11 and 14: Denmark; 12: Germany; 13: Netherlands; 15: Poland; 16: England; 17:

Estonia; 18: Lithuania

3

2 METHODOLOGY AND THEORETICAL FOUNDATION

Chapter 2

Methodology and Theoretical Foundation

2.1 Definitions of Graph-Structured Data

The concept of graphs from graph theory is fundamental to understanding Graph Neural Networks.

A graph in this context consists of two key elements: nodes (also called vertices) and edges. Nodes

represent individual pieces of data, and edges represent the connections between them. We can

represent a graph using the notation G = (V , E), where G is the entire graph, V is the set containing

all the nodes, and E is the set containing all the edges [14].

The edges in E can be encoded into an adjacency matrix A, describing the structure and connec-

tivity in the graph. The adjacency matrix offers a compact way to represent a graph’s connections

using a square matrix. This matrix has dimensions n× n, where n represents the number of nodes

in the graph. Each cell (i, j) corresponds to the connection between node i and node j. A cell value

of 1 signifies an edge exists between them, while a 0 indicates no connection. Notably, for graphs

where edges have no direction (undirected graphs), the adjacency matrix is symmetrical [10]. An

example of a graph and its corresponding adjacency matrix can be shown below in Figure 2.

(a) Graph



0 1 1 0 0

1 0 1 1 1

1 1 0 1 0

0 1 1 0 1

0 1 0 1 0


(b) Adjacency matrix

Figure 2: An undirected graph and its adjacency matrix

4

2 METHODOLOGY AND THEORETICAL FOUNDATION

In addition to connections, each node in a graph can also hold its own information, called node fea-

tures. These features can be numerical values representing properties of the data point associated

with the node, categorical data indicating its type, or even text embeddings for textual data associ-

ated with the node. Node features capture the intrinsic characteristics of the data points represented

by the nodes.

In the field of artificial intelligence, computers can be trained to learn and recognize patterns from

data. These are called artificial neural networks, and they are powerful tools for various tasks. Tra-

ditional neural networks, like Convolutional Neural Networks, are a specific type of neural network

that excels at analyzing data arranged in a fixed grid-like format, such as images [11]. However,

they struggle to handle the flexible relationships between data points in graphs. This is where

Graph Neural Networks come in. GNNs are specifically designed to process graphs. They lever-

age the graph structure encoded in the adjacency matrix and the node features to learn meaningful

representations for both individual nodes and the entire graph itself. These learned representations

are then used for various tasks on graphs, such as node classification, link prediction, and graph

generation.

Before exploring Graph Neural Networks and their diverse architectures, we need basic under-

standing of machine learning and neural networks.

5

2 METHODOLOGY AND THEORETICAL FOUNDATION

2.2 Machine Learning

This section covers the fundamentals of machine learning and is based on [6]. Machine learning

is a field that focuses on developing algorithms and models that uses observed data to find pat-

terns in the underlying structure that can be used to make predictions. A key distinction exists

between classification and regression tasks. Classification algorithms predict discrete categories,

like whether an email is spam or not. In contrast, regression algorithms predict continuous values,

such as the price of a house. The goal of the machine learning model is to minimize a loss function,

which measures the performance of the predicted target values versus the factual target values. The

performance of the model is often assessed by the value of the loss function it achieves. Different

tasks require different loss functions, but for regression, a few simple ones are Mean Squared Error

(MSE) or Root Mean Squared Error (RMSE). Training the model involves optimizing this func-

tion through the machine learning algorithm’s iterative adjustments of model parameters. These

adjustable parameters are commonly known as trainable parameters. Machine learning algorithms

aren’t just about performing well on the training data they’re given. The objective is to learn from

that data and apply that knowledge to new situations. This means finding patterns in the training

data that are likely to hold true even for data the model has never seen before. The model’s ability

to make accurate predictions on new inputs hinges on effective training. One common approach

is to divide the data into three subsets. The first set, called the training set, is used to train the

model. The model learns by finding a function that performs well on this data. In order to know

how well this trained model perform on completely new data, we introduce the test set. This data

is kept separate from the training set and used to evaluate the model’s generalization ability, i.e. its

performance on unseen data. Now, training a model often involves adjusting settings called hyper-

parameters. To find the best settings, we could just keep trying them out on the training set and see

which one performs best. However, this would be misleading. The model might simply memorize

the training data instead of learning true patterns. To avoid this bias, we introduce a third set: the

validation set. This set is used to fine-tune the hyperparameters. We train the model with different

hyperparameter settings on the training set, then evaluate its performance on the validation set. The

hyperparameters that perform best on the validation set are then used with the final model evaluated

on the completely unseen test set. The value of the loss function calculated for each respective set

is also known as the training, validation, and test error.

6

2 METHODOLOGY AND THEORETICAL FOUNDATION

There are two main challenges in machine learning that affect how well an algorithm performs:

underfitting and overfitting. Underfitting happens when the model is too simple and can’t capture

the important patterns in the training data. As a result, the model performs poorly on both the

training data (high training error) and unseen data (likely high test error). Overfitting occurs when

the model becomes too complex and memorizes the specific details of the training data, including

noise or irrelevant information. While the model might achieve a very low training error, it won’t

perform well on unseen data (large gap between training and test error). The ideal scenario is to

find a balance between these two extremes. The model should be complex enough to learn the

underlying patterns but not so complex that it memorizes the noise.

2.3 Neural Networks

In this section, based on [6], we present neural networks in its simplest form, as a Feed-Forward

Neural Network. They are the foundation upon which more complex neural network architectures

are built, and serve as a great introduction to how neural networks process information. In a Feed-

Forward Neural Network, information travels in one direction only, forward from the input layer

through hidden layers to the output layer. Each layer in the neural network is made up of individual

neurons. They receive input from the previous layer, perform some computation, and then send

their output to the next layer. The input layer receives the initial data, like the pixels of an image

or numerical features. Hidden layers are used to help extract complex patterns from the data. One

or more of these layers are used to process and transform the information from the previous layer.

The output layer produces the final output of the network, like a classification (e.g., an object in

an image) or a numerical value, as in the case of regression. During training, the network adjusts

the connections between neurons in each layer. These connections are associated with weights that

determine how strongly signals are transmitted. By adjusting the weights, the network learns to

map the input data to the desired output.

If we consider the linear model, where it takes an input vector with d dimensions and transforms

it into an output vector with m dimensions (the number of neurons in the layer), each hidden layer

calculates

z = WT × x + b,

where z ∈ Rm, W ∈ Rd×m is the weight matrix, x ∈ Rd the input vector and b ∈ Rm the bias

7

2 METHODOLOGY AND THEORETICAL FOUNDATION

vector. It then passes the output through an activation function σ(z) and then delivers the outcome to

the output layer. The process is visualized in Figure 3. The activation function is used to introduce

non-linearity and helps the network to learn complex patterns. The activation function is applied

element-wise, meaning it’s applied to each element of the vector z separately. Commonly used

activation functions are the Rectified Linear Unit, defined as: ReLU(z) = max(0, z), Tanh, and the

Sigmoid function σ(z) = 1
(1+e−z)

. So the final output of the linear model will be

z = σ(WT × x + b). (1)

Figure 3: Structure of a Feed-Forward Neural Network, with a single output neuron.

8

2 METHODOLOGY AND THEORETICAL FOUNDATION

2.4 Optimization

Different problems require different objective functions to be optimize during training. For min-

imization, functions like MSE or RMSE are commonly used to measures the difference between

the network’s predictions and the actual values. Backpropagation algorithms are used in order for

the network to learn from its errors. It calculates the gradient of the objective function with respect

to each weight and bias within the network. The gradient essentially provides information on the

direction and magnitude in which changing a weight or bias will affect the error. After calculating

the gradient using backpropagation, we can use it to optimize the parameters of the neural network.

Gradient descent is an simple optimization algorithm that iteratively adjusts the network’s weights

and biases based on the calculated gradients. It follows the negative gradient, meaning it moves

the weights in the direction that will most decrease the error. These gradients hold valuable infor-

mation: a) Direction: They indicate whether increasing or decreasing a particular weight or bias

will lead to a decrease in the error (loss). b) Magnitude: The magnitude of the gradient reflects

how much of an adjustment should be made. Following these gradients, optimization algorithms

like gradient descent iteratively update the network’s parameters. This iterative process allows the

network to learn from its errors and improve its performance on future predictions. However, basic

gradient descent can be slow and prone to getting stuck in local minima. Hence different optimiz-

ers exists to alleviate this problem that are built upon gradient decent, such as Adam, RMSprop etc

[13]. These optimizers incorporate additional factors like past gradients and momentum to navigate

towards the minimum error more efficiently. A key consideration for optimization problems is the

learning rate. This value controls the step size taken by the optimizer during weight updates. A

very small learning rate can lead to slow convergence, while a large one can cause the optimizer to

overshoot the minimum and oscillate around it.

2.5 Uncertainty Metrics

In machine learning, error metrics, or preferably known as uncertainty metrics, play a crucial role

in assessing the performance of prediction models. These metrics compare the predicted values

with the actual values to measure the accuracy of the model. For classification tasks, accuracy

is a common uncertainty metric. It measures the proportion of times the model correctly assigns

data points to their respective categories. Regression models don’t have pre-defined classes like

9

2 METHODOLOGY AND THEORETICAL FOUNDATION

in classification, hence predicting the exact true value is often impractical. Therefore, using accu-

racy wouldn’t be effective even if the models predictions are close to the real values. To evaluate

regression models more effectively, we use alternative metrics that capture different aspects of the

prediction uncertainty. MSE, RMSE and Mean Absolute Error (MAE) are some popular regression

metrics

MSE =
1

N

N∑
i=1

(Yi − Ŷi)
2,

RMSE =

Ã
1

N

N∑
i=1

(Yi − Ŷi)2,

MAE =
1

N

N∑
i=1

|Yi − Ŷi|.

MSE measures the average squared difference between the predicted and actual values. While

sensitive to outliers, it penalizes larger errors more heavily. RMSE is the square root of MSE,

providing the uncertainty in the same units as the original data. Hence, using RMSE can be more

intuitive. MAE calculates the average of the absolute differences between predicted and actual

values, and is less sensitive to outliers compared to MSE [2].

10

2 METHODOLOGY AND THEORETICAL FOUNDATION

2.6 Graph Neural Networks

This section delves into the core theory behind the Graph Neural Networks used in this work.

The data in this work consists of multivariate time series data, so we’ll need specific GNNs that

can efficiently handle this. We’ll explore two prominent GNN architectures: Graph Convolutional

Neural Networks (GCNs) and Fourier Graph Neural Networks (FGNNs). This work builds upon

the core concepts introduced in ([16], [15], [8]). For a deeper understanding of these concepts, we

refer the reader to the original sources cited in this section.

2.6.1 GRU-GCN

The GRU-GCN model consists of Graph Convolutional Networks and Gated Recurrent Units

(GRUs). The model uses GCNs to capture the spatial relationships between the grid structured

network. This is because electrical power flow in one bidding zone can be influenced by flow in

neighboring zones. By analyzing the network structure, the GCN learns complex topological fea-

tures that represent these spatial dependencies. The GRU model [3] are a type of Recurrent Neural

Network (RNN) proficient at handling sequential data. RNNs process data sequentially, one step

at a time. At each step, they take the current input and combine it with the information retained in

their memory from previous steps. This allows them to learn how the current data point relates to

the past. While RNNs are strong contenders for modeling sequential data like in power grid fore-

casts, their long-term forecasting abilities can suffer from the vanishing gradient problem, where

the influence of past data diminishes as the sequence lengthens [1]. To overcome this limitation,

variants like Long Short-Term Memory (LSTM) [7] and GRU were developed [5]. GRU shows a

great potential in this area due to its simpler architecture and faster training process. In the GRU-

GCN model, GRUs are employed to capture the temporal dynamics of of the data. This means they

can learn how patterns change over time, considering factors like daily or hourly variations.

The GRU-GCN model leverages the strengths of both Graph Convolutional Networks and Gated

Recurrent Units to capture the inherent properties of the electric power grid. The model takes a

sequence of historical time series data as input, and a GCN layer processes this data, exploiting

the network’s topological structure to extract spatial features. These time series, now enriched with

spatial information, are then fed into the GRU layer. The GRU captures the dynamic temporal

11

2 METHODOLOGY AND THEORETICAL FOUNDATION

changes within the network through information flow between its internal units. This two-step

approach allows the GRU-GCN model to effectively learn both the spatial and temporal character-

istics of the data.

Lets consider a graph G = (V , E), where V = {v1, v2, ..., vN} is the set of N nodes and E the

set of edges. The N × N adjacency matrix representing the connections between the nodes in the

network is defined as

Ai,j =

1 if (vi, vj) ∈ E

0 otherwise
for all 1 ≤ i, j ≤ N.

Let X ∈ RN×P be the feature matrix, where P represents the number of node attribute features,

i.e. the length of the historical time series. We now define l simple graph convolution layers as

fl(X,A) = σl(Afl−1(X,A)Wl), (2)

where f0(X,A) is the input feature matrix X , Wl the weight matrix at layer l and A the adjacency

matrix. While simple graph convolution layers effectively combine information from neighbor-

ing nodes, they suffer from two shortcomings. Firstly, they don’t consider a nodes own features,

only taking neighbouring node features into account. Secondly, the varying number of connections

(node degrees) leads to features with inconsistent scales, making comparisons between nodes diffi-

cult. To address these limitations, the adjacency matrix is modified. By adding self-loops, Ã = A +

IN , the model incorporates a nodes own information. Additionally, normalization ensures features

have a comparable scale regardless of a node’s degree. This essentially allows the model to take

an average of information from neighboring nodes. This normalization is done as proposed in [8],

with Â = D̃− 1
2 ÃD̃− 1

2 , D̃ =
∑

j Ãi,j , where D̃ is the degree matrix. Equation 2 is now transformed

to

fl(X,A) = σl(Âfl−1(X,A)Wl). (3)

Now we have the modeling for the spatial dependence, we move on to the temporal dependence.

In the GRU model, ht−1 represents the hidden state at the previous time step t− 1, and xt signifies

the current data information. The model employs two key gates: the reset gate rt and the update

gate ut. The reset gate controls the degree to which past information ht−1 is discarded, while

the update gate regulates how much of this past information is incorporated into the current state.

12

2 METHODOLOGY AND THEORETICAL FOUNDATION

This interplay between gates determines the cell memory ct, which essentially captures the long-

term dependencies within the data. Finally, the output state ht is produced based on the precessed

information, containing both the spatial and temporal dependence of the data [16]. By effectively

combining past information ht−1 with current data xt through the reset and update gates rt , ut ,

GRU can capture both short-term trends and historical patterns. This mechanism allows GRU to

excel at modeling the crucial temporal dependencies present in power grid datasets, making it a

valuable tool for accurate forecasting.

The GRU-GCN model can now be constructed as below. The function f(Xt, A) denotes the graph

convolution process as defined in Equation 3. Here, W and b denote the weights and biases used

during training, respectively. The symbol * represents element-wise multiplication.

ut = σ(Wuf(Xt, A) +Wuht−1 + bu),

rt = σ(Wrf(Xt, A) +Wrht−1 + br),

ct = tanh(Wcf(Xt, A) +Wc(rt ∗ ht−1) + bc),

ht = ut ∗ ht−1 + (1− ut) ∗ ct.

The graph convolution extracts the inherent spatial relationships within the data, effectively un-

derstanding how different data points are interconnected. Simultaneously, the GRU unit analyzes

the temporal dependencies by incorporating past information into the current state. This combined

approach allows the model to gain a comprehensive understanding of the data, considering both the

static relationships and the evolving trends over time. The overview of the GRU-GCN architecture

is shown in Figure 4.

Figure 4: Architecture of the GRU-GCN model

13

2 METHODOLOGY AND THEORETICAL FOUNDATION

2.6.2 Fourier Graph Neural Network

This section covers the theory about the FGNN used in this work. Now, instead of using a RNN

to capture temporal dependence and a GNN for spatial dependence, the approach of FGNN is to

capture the unified spatiotemporal dynamics of the data within a single framework. The concepts

of FGNN is to define a hypervariate graph, where each node represents a single value from a time

series regardless of variable or timestamp. This approach unifies the spatial and temporal aspects

of the data into a single graph structure. Now the task becomes predictions on the hypervariate

graph. The idea to efficiently do this is by leveraging what the authors call Fourier Graph Oper-

ators (FGOs) [15]. This operator is a replacement of classic graph operations, like convolutions,

which performs matrix multiplications in Fourier space. In this way we both capture the inter-series

dependencies, and reduce the complexity of the operations performed [15].

We first consider the hypervariate graph, Gt = (XG
t , A

G
t). We start with the input multivariate

time series Xt ∈ RN×T with N variables observed at time t. We construct the hypervariate graph

of NT nodes by regarding each element of Xt as one node of Gt, resulting in the node features

XG
t ∈ RNT×1. The adjacency matrix, AG

t ∈ RNT×NT , is a binary matrix. The value at a po-

sition can indicate the presence or absence of an edge, the strength/weight of the connection, or

even additional information about the relationship between the nodes. A value of 1 typically sig-

nifies a connection exists between nodes i and j, while 0 indicates no connection. In weighted

graphs, the value represents the strength or importance of the connection. Higher values indicate

stronger connections. In some cases, the matrix might contain additional information beyond just

presence/absence, like the type of relationship or a distance measure. Even some datasets could be

represented by a fully-connected graph when every node is connected to every other node. Through

training, the network identifies the relevant connections within the graph structure. This allows the

graph to encode three key types of dependencies: Intra-series temporal dependencies: This refers

to the connections between nodes representing the same variable at different time steps, captur-

ing how the values of a single variable evolve over time. Inter-series spatial dependencies: These

connections exist between nodes representing different variables at the same time step, reflecting

the relationships between variables at a specific point in time. Time-varying spatiotemporal depen-

dencies: These connections capture the dynamic relationships between variables across different

time steps. By considering all these connections within a single graph structure, the model can

effectively learn the complex interplay between space and time within the data.

14

2 METHODOLOGY AND THEORETICAL FOUNDATION

Now, we consider the Fourier Graph Operator S ∈ Cd×d, which satisfies F(X)SA,W = F(AXW),

where F denotes Discrete Fourier Transform (DFT). This operation performs convolutions in

Fourier space. An interesting aspect of this approach is that multiplying the transformed data

F(X) with the FGO S in the Fourier space corresponds to performing a graph convolution opera-

tion in the original time domain [15]. This is significant because multiplications in the frequency

domain have a computational complexity of O(n), where n is the number of elements. In contrast,

performing the equivalent graph convolution directly in the time domain requires operations with

a complexity of O(n2). This difference in complexity motivates the development of a GNN by

leveraging convolutions in Fourier space.

FGNN for multivariate time series forecasting can now be presented. Given the input data Xt ∈
RN×T , we first construct a fully-connected hypervariate graph Gt = (XG

t , A
G
t), then project XG

t ∈
RNT×1 into node embeddings XG

t ∈ RNT×d using the embedding matrix E ∈ R1×d, where d is the

embedding dimension.

To capture the spatiotemporal dependencies simultaneously, we feed embedded hypervariate graphs

with XG
t to FGNN. We begin to perform DFT on each discrete spatio-temporal dimension of the

embeddings XG
t and obtain the frequency output X G

t := F(XG
t) ∈ CNT×d. Next, we perform a

recursive multiplication between X G
t and FGOs S0:k in Fourier space, yielding the resulting repre-

sentations YG
t as follows:

YG
t =

K∑
k=0

σ(F(XG
t))S0:k + bk),

where S0:k =
∏K

i=0 Si, K is the number of layers, Sk is the FGO in the k-th layer, bk ∈ Cd

the bias parameters and σ nonlinear activation function. Since YG
t is in Fourier space, we trans-

form it back to the time domain using Inverse Discrete Fourier Transform (IDFT) F−1, as YG
t =

F−1(YG
t) ∈ RNT×d. Then, the output from the FGNN is used in a Feed-Forward Neural Network

(as in Equation 1) to obtain the final predictions Ŷt = FNN(YG
t). A schematic representation of the

entire model can be illustrated in Figure 5.

15

2 METHODOLOGY AND THEORETICAL FOUNDATION

Figure 5: Architecture of the FGNN model. We take the hypervariate graph and embed the node features.

We then feed those embeddings to FGNN and perform DFT. The network then performs a series of recursive

multiplications and summations to capture relationships between nodes based on the graph structure. The

output of the message passing is then transformed back into the time domain using the IDFT. Finally, the

output is fed into fully-connected layers to generate predictions of our desired dimension

The overall time complexity of the FGNN is O(ndlogn +Knd2), which includes the DFT, IDFT

and the multiplications of FGOs F(X)S. This, compared to the time complexity of the same

operations in the time domain, AXW , is O(n2d+ nd2), makes FGNN more efficient [15].

16

3 NUMERICAL EXPERIMENTS

Chapter 3

Numerical Experiments
So far, we have only discussed the theoretical and methodological foundations of this work. Now

we’ll introduce our dataset. In this chapter, we will go over a few experiments with the GRU-GCN

and FGNN models, to evaluate how well they perform on our dataset. Since this work is done in

collaboration with Svenska kraftnät (Svk), we will also compare these models to one currently used

model at Svk that performs these kinds of forecasts. We will refer to that model as ModelX. Due

to confidentiality, ModelX will remain unknown. The experiments in this section are conducted in

Python using PyTorch 2.0 CUDA 11.7 [12].

The dataset contains the net-positions from all 18 bidding zones introduced in Figure 1. We give

an overview over the net-positions of SE1-SE4 from 2018-2024 in Figure 6. Generally, northern

Sweden (SE1, SE2) has the repeating pattern of a positive net-position, while southern Sweden

(SE3, SE4) has a negative net-position. Furthermore, the net-position is measured in megawatts

(MW).

Figure 6: Plot of Swedens net-positions

17

3 NUMERICAL EXPERIMENTS

The dataset is a multivariate time series, comprising 54144 observations across 18 variables, with

each variable representing a node. Further details about the data are shown in Table 1.

Table 1: Description of the dataset

Dataset Time Span #Nodes #Edges #Samples Sampling Rate Data Range Median

Net-positions 01-01-2018/06-03-2024 18 30 54144 Hourly -6853 MW ~7054 MW -30 MW

3.1 Experiments GRU-GCN

We will begin to train our GRU-GCN model, and evaluate its performance on the validation set. We

split the data into 70% training, 20% validation and 10% test. This means the training set includes

the first 37901 observations for all 18 nodes, the validation set includes the next 10829 observations,

and the test set consists of the final 5414 observations. We perform hyperparameter-tuning on the

validation set, with the parameters as shown in Table 2. The batch size refers to the number of

training examples utilized in one iteration, and it’s a hyperparameter that determines the number of

samples to work through before updating the model parameters during training. We train the model

for 100 epochs, and prune trails with an early stopping strategy with the patience of 10 epochs.

That means, trails that has not improved within 10 epochs are pruned. The objective is to minimize

the RMSE, so lower RMSE indicates better performance. The result of the parameter-tuning can

be shown in Figure 7.

Table 2: Parameters for tuning GRU-GCN

Parameter Value
Hidden units 32, 48, 64

Batch size 32, 48, 64

Learning rate 0.0001, 0.001, 0.005

Input length 12, 24, 48

18

3 NUMERICAL EXPERIMENTS

Figure 7: Plot of the tuned parameters. The objective value on the y-axis is the RMSE, and on the x-axis

the tuneable parameters. Each trail is a combination of parameters, and the intensity in color to distinguish

between different trials

The overall best configurations was with a batch size of 32, hidden units of 64, learning rate of

0.001 and input of 48. We can also see that this configuration was the best for each input length.

It’s worth noting that all trails where the batch size was equal or greater then the hidden units got

all pruned. And a learning rate of 0.005 resulted in a lot of trails not completing, and increasing

it even further introduces overfitting and very unstable trails. A lot of trails finished with hidden

units of 64 and/or a batch size of 32, and since 64 and 32 are on the end tail of the spectrum, we

therefore performed a follow up experiment with more/less units. We now test the best configura-

tion for more hidden units, and less batch size to see which model performs best. As we can see in

Figure 8, 64 hidden units and 32 batch size resulted in lowest RMSE and MAE.

19

3 NUMERICAL EXPERIMENTS

(a) (b)

Figure 8: Effects on RMSE and MAE for different number of hidden units (a) and batch size (b)

Experimenting with different prediction lengths will also greatly impact the result. Forecasting a

few hour ahead is easier then forecasting a few days ahead. In Figure 9 we can see how the RMSE

and MAE is greatly affected by a longer prediction horizon.

Figure 9: RMSE and MAE for different prediction lengths

20

3 NUMERICAL EXPERIMENTS

We will now test our final model and forecast the net-positions with the best configuration and

evaluate the results on the test set. This is done with the batch size of 32, hidden units of 64,

learning rate of 0.001, input length of 48 hours and prediction length of 12 hours. This implies that

the model uses 48 observations as input to predict the next 12, after which it moves the window

until the entire test set is forecasted. To visualize the results, we plot the predicted versus the true

net-position of SE3, as can be seen in Figure 10. We can see that the model seems to capture the

overall trend in the data, but also over- and undershoots. To further investigate our assumption,

we plot one weeks worth of data (see Figure 11) and see how the model performs. The model is

successful in following the patterns, but do indeed have a tendency to overshoot and occasionally

lag behind. Instead of visualizing each bidding zone at a time, we can plot the RMSE and MAE

for all bidding zones and see how the forecast are affected by each zone. In Figure 12, we see that

there are a few bidding zones that largely contributes to the increase in uncertainty in the model.

Figure 10: Plot of SE3 for all test data, with GRU-GCN as the forecasting model. Net-position versus time

with one hour resolution

21

3 NUMERICAL EXPERIMENTS

Figure 11: Plot of SE3 for the last week in the test data, with GRU-GCN as the forecasting model. Net-

position versus time with one hour resolution

Figure 12: Plot of RMSE and MAE for all bidding zones using GRU-GCN

22

3 NUMERICAL EXPERIMENTS

3.2 Experiments with FGNN

We have the same experimental setup as before, with 70% training, 20% validation and 10% test

data. We also train the model for 100 epochs and perform hyperparameter-tuning on the validation

set, with an early stopping strategy with the patience of 10 epochs. We tune the parameters as

shown in Table 3. The result of the parameter-tuning can be visualized in Figure 13.

Table 3: Parameters for tuning FGNN

Parameter Value
Hidden units 64, 96, 128

Batch size 16, 32, 64

Embedding size 64, 96, 128

Learning rate 0.00001, 0.0005, 0.0001

Input length 12, 24, 48

Figure 13: Plot of the tuned parameters. The objective value on the y-axis is the RMSE, and on the x-axis

the tuneable parameters. Each trail is a combination of parameters, and the intensity in color to distinguish

between different trials

23

3 NUMERICAL EXPERIMENTS

The trail with the best configuration was with a batch size of 32, embedding size of 64, hidden size

of 96 and learning rate of 0.0001. We also test for fewer embedding size, different input lengths

and predict lengths, which can be shown in Figure 14.

(a) (b)

(c)

Figure 14: Effects on RMSE and MAE for different embedding size (a), input length (b), and prediction

length (c)

24

3 NUMERICAL EXPERIMENTS

We will now proceed to assess the performance of our finalized model using the best configuration.

This is done with the batch size of 32, embedding size of 64, hidden size of 96, learning rate of

0.0001, input length of 48 hours and prediction length of 12 hours. For comparison purposes, we

replicate the previous visualizations. Figure 15 depicts the predicted net-position against the true

SE3 values. Furthermore, Figure 16 illustrates the model’s performance on one week’s worth of

data. Both visualizations suggest the model effectively captures the underlying trend of the data,

demonstrating good agreement with ground truth data.

Figure 15: Plot of SE3 for all test data, with FGNN as the forecasting model. Net-position versus time with

one hour resolution

25

3 NUMERICAL EXPERIMENTS

Figure 16: Plot of SE3 for the last week in the test data, with FGNN as the forecasting model. Net-position

versus time with one hour resolution

We also visualize the RMSE and MAE across all zones simultaneously in Figure 17. As depicted in

Figure 17, a few bidding zones appear to contribute significantly to the increased model uncertainty.

Consistent with Figure 12, we see the same bidding zones contributing to an increased uncertainty.

While still significant, their influence is noticeably lower compared to the GRU-GCN model.

Figure 17: Plot of RMSE and MAE for all bidding zones using FGNN

26

3 NUMERICAL EXPERIMENTS

3.3 ModelX

We now compare the performance of our proposed models with ModelX, the currently used model

at Svk. ModelX is evaluated on the same underlying data as GRU-GCN and FGNN. As in the

previous evaluations, we visualize the predicted net-position of SE3 for both the entire test duration

(see Figure 18) and a one-week time-frame (see Figure 19). A key observation from Figure 18 is

that the model occasionally exhibits significant overshoots. However, when observing shorter time-

frames, Figure 19 demonstrates that the model retains the ability to capture underlying patterns in

the data.

Figure 18: Plot of SE3 for all test data, with ModelX as the forecasting model. Net-position versus time

with one hour resolution

To further investigate the source of uncertainty, Figure 20 identifies the bidding zones that sig-

nificantly contribute to the model’s overall uncertainty. Consistent with prior observations, a few

number of bidding zones appear to be the primary drivers. It’s noteworthy that, as evidenced in

Figure 20, the severe overshoots exhibited by ModelX significantly inflate its overall performance.

Interestingly, a comparison of the remaining bidding zones suggests that ModelX may outperform,

or at least compete with both the GRU-GCN and the FGNN models in these specific zones.

27

3 NUMERICAL EXPERIMENTS

Figure 19: Plot of SE3 for the last week in the test data, with ModelX as the forecasting model. Net-position

versus time with one hour resolution

Figure 20: Plot of RMSE and MAE for all bidding zones using ModelX

28

3 NUMERICAL EXPERIMENTS

Figure 21 presents a comparative visualization of all three models alongside the true values. This

facilitates a side-by-side evaluation of each models performance across different bidding zones at

a given time.

Figure 21: Comparison between the models for the final time step

One thing that might be a big contributor to the increased uncertainty in the models is the impurity

of the dataset. A few bidding zones had abnormally large amount of zeros as value or missing data,

compared to the other bidding zones. Missing data points are particularly common in time series

data due to sensor malfunctions, outages, or irregular recording intervals. It’s important to note

that the reasons for missing data are complex and might involve a combination of these factors.

Understanding the cause of missing data is crucial for choosing the most appropriate technique

to handle it and avoid introducing bias into the model. To investigate this, we kept the noisy

data as it was, only filling the missing values with zeros (as a added perturbation), indicating no

exchange flow between neighboring zones and zone of interest. A few bidding zones had very

many zeros in the training data, and very few or none in validation and test data, and a few bidding

zones had very few or none in the training data, but vastly more in the validation or test data.

Having a net-position of zero can also indicate that there is a balance in the system. However,

29

3 NUMERICAL EXPERIMENTS

observing Figure 22, which included a lot of zeros and had a larger test metric, we can see drastic

jumps, going from -5000 MW at one instance and to zero the next. This is not possible in the

physical grid. As observed, missing values can greatly impact the accuracy and performance of

the models, especially when the length of the perturbation exceeds the input length of the model.

First of all, missing values limit the information available to the model, hindering its ability to

learn underlying patterns and trends. Second, depending on the missing data pattern (random vs.

systematic), the model might learn biased relationships, leading to inaccurate predictions. Several

techniques can be employed to address these missing values in time series, for example, simple

imputation. This involves replacing missing values with a basic statistic like mean, median, or

the previous observation. For a more comprehensive comparison, imputing missing values with

the previous non-zero value might be worth exploring. This approach could potentially improve

the performance of all models, particularly for capturing these disruptive events. The choice of

this imputation technique is based on its simplicity while preserving patterns and trends in the

data. Consider a time series that oscillates evenly around a certain value, with the mean close to

that value. If there’s a missing value at a peak, imputing it using the mean would create a jump,

disrupting the oscillating pattern. To avoid this, imputing with the previous non-zero value ensures

a smoother transition and preserves the underlying trend.

30

3 NUMERICAL EXPERIMENTS

(a) (b)

(c)

Figure 22: Plot of the net-positions of NO1 over time. (a) Using the forecasting model FGNN, (b) using

GRU-GCN, and (c) using ModelX

31

3 NUMERICAL EXPERIMENTS

To further explore the impact of missing data imputation on model performance, we conducted

a follow-up experiment. We maintain the same setup as before for the models with a prediction

length of 12 hours, but now we have replaced all missing values with the previous non-zero obser-

vation (illustrated in Figure 23). As anticipated, all models exhibited performance improvements.

However, the models (FGNN and GRU-GCN) that previously captured some level of disruption

in the data benefited less significantly from this imputation compared to ModelX. ModelX how-

ever, which previously disregarded these disruptions, benefited considerably from this imputation

technique. Its performance improved notably, and a more comprehensive comparison between the

models uncertainty can now be shown in Figure 24, where we visualize the RMSE and MAE for

each bidding zone in the test set.

(a) (b)

(c)

Figure 23: Plot of the net-positions of NO1 over time, with the modified data. (a) Using the forecasting

model FGNN, (b) using GRU-GCN, and (c) using ModelX

32

3 NUMERICAL EXPERIMENTS

(a)

(b)

Figure 24: Plot of RMSE (a) and MAE (b) for the entire test period, using the three models

The RMSE and MAE for Sweden’s four bidding zones and the overall performance can be shown

in Table 4 and Table 5, respectively.

33

3 NUMERICAL EXPERIMENTS

Table 4: RMSE and MAE for Sweden’s bidding zones (BZ)

GRU-GCN FGNN ModelX
BZ RMSE MAE RMSE MAE RMSE MAE
SE1 510.2 384.5 501.4 382.9 633.1 505.7

SE2 975.5 790.6 896.8 785.8 862.1 602.4

SE3 624.0 423.3 515.5 402.2 1119.7 788.7

SE4 613.6 396.8 501.8 392.9 495.4 381.5

SE 680.8 498.8 603.9 490.8 777.6 569.6

Table 5: Overall RMSE and MAE

Model RMSE MAE
GRU-GCN 716.6 526.6

FGNN 676.1 502.5

ModelX 748.2 516.8

Both the GRU-GCN and FGNN models achieved competitive performance on the test set. The

overall average performance obtained with the GRU-GCN model was a RMSE of 716.6, and a

MAE of 526.2. Similarly, the FGNN achieved an RMSE of 676.1 and an MAE of 502.5. ModelX

achieved an RMSE of 748.2 and an MAE of 516.8. We suspect that the occasional significant

overshoots exhibited by all models might be attributed to data impurities. The presence of frequent

disruptions within the underlying dataset creates challenges for all models in perfectly predicting

these events. Even with added imputations, we can still see in overall that it’s the same bidding

zones contributing to an increased uncertainty.

34

4 DISCUSSION & CONCLUSION

Chapter 4

Discussion & Conclusion
This thesis contributes to the field of power grid forecasting by demonstrating the potential of Graph

Neural Networks (GNNs). Two GNN architectures, GRU-GCN and FGNN, were successfully

applied to the Nordic electricity market, achieving competitive performance against the existing

ModelX. The results indicate that GNNs can effectively leverage the inherent graph structure of the

power grid, leading to improved accuracy in net-position forecasts.

The high uncertainty observed in specific bidding zones (DE, DK1, NO2, NO5, SE2) and the vari-

ations between models in other zones (DE, DK1, DK2, FI, NO3, NO4, NO5, SE1, SE3) underscore

the complex nature of forecasting in these regions. The lower uncertainty in zones like EE, LT, and

PL suggests potential regional disparities in data quality or underlying market dynamics.

Despite the promising results, challenges remain. The occasional significant overshoots by all mod-

els point towards the need for improved data preprocessing and handling of disruptions. Addition-

ally, the black-box nature of GNNs necessitates further research into interpretability to understand

the factors influencing their predictions.

In conclusion, this thesis demonstrates the viability of Graph Neural Networks for power grid fore-

casting. Both GRU-GCN and FGNN demonstrate competitive performance, suggesting that GNNs

are a promising tool for improving power grid forecasting accuracy. However, regional variations

in uncertainty and model performance across bidding zones highlight the need for region-specific

considerations. Additionally, occasional overshoots by all models emphasize the importance of

robust data preprocessing and models capable of handling real-world disruptions. Future research

directions include exploring interpretable GNNs, incorporating additional features or data sources,

and investigating alternative GNN architectures. These advancements could further enhance GNNs

performance and applicability in power grid forecasting.

35

REFERENCES

References
[1] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. “Learning long-term dependencies with

gradient descent is difficult”. In: IEEE transactions on neural networks 5.2 (1994), pp. 157–

166.

[2] Alexei Botchkarev. “Performance metrics (error measures) in machine learning regression,

forecasting and prognostics: Properties and typology”. In: arXiv preprint arXiv:1809.03006

(2018).

[3] Kyunghyun Cho et al. “On the properties of neural machine translation: Encoder-decoder

approaches”. In: arXiv preprint arXiv:1409.1259 (2014).

[4] Lindholm. K. Energiföretagen. Energiföretagen förklarar: Elområden och elpriset. (2023).

URL: https://www.energiforetagen.se/pressrum/nyheter/2022/

augusti/energiforetagen-forklarar-elomraden-och-elpriset/. (ac-

cessed: 31.01.2024).

[5] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. “Learning to forget: Continual pre-

diction with LSTM”. In: Neural computation 12.10 (2000), pp. 2451–2471.

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.

deeplearningbook.org. MIT Press, 2016. (accessed: 28.04.2024).

[7] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural computa-

tion 9.8 (1997), pp. 1735–1780.

[8] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph convolutional

networks”. In: arXiv preprint arXiv:1609.02907 (2016).

[9] Svenska kraftnät. Om elmarknaden. (2023). URL: https : / / www . svk . se / om -

kraftsystemet/om-elmarknaden/. (accessed: 31.01.2024).

[10] Maxime Labonne. Hands-On Graph Neural Networks Using Python: Practical techniques

and architectures for building powerful graph and deep learning apps with PyTorch. Packt

Publishing Ltd, 2023.

[11] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In: Proceed-

ings of the IEEE 86.11 (1998), pp. 2278–2324.

36

https://www.energiforetagen.se/pressrum/nyheter/2022/augusti/energiforetagen-forklarar-elomraden-och-elpriset/
https://www.energiforetagen.se/pressrum/nyheter/2022/augusti/energiforetagen-forklarar-elomraden-och-elpriset/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.svk.se/om-kraftsystemet/om-elmarknaden/
https://www.svk.se/om-kraftsystemet/om-elmarknaden/

REFERENCES

[12] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep learning library”.

In: Advances in neural information processing systems 32 (2019).

[13] Sebastian Ruder. “An overview of gradient descent optimization algorithms”. In: arXiv

preprint arXiv:1609.04747 (2016).

[14] Feng Xia et al. “Graph learning: A survey”. In: IEEE Transactions on Artificial Intelligence

2.2 (2021), pp. 109–127.

[15] Kun Yi et al. “FourierGNN: Rethinking multivariate time series forecasting from a pure

graph perspective”. In: Advances in Neural Information Processing Systems 36 (2024).

[16] Ling Zhao et al. “T-gcn: A temporal graph convolutional network for traffic prediction”. In:

IEEE transactions on intelligent transportation systems 21.9 (2019), pp. 3848–3858.

37

	Introduction
	Our approach
	Structure

	Methodology and Theoretical Foundation
	Definitions of Graph-Structured Data
	Machine Learning
	Neural Networks
	Optimization
	Uncertainty Metrics
	Graph Neural Networks
	GRU-GCN
	Fourier Graph Neural Network

	Numerical Experiments
	Experiments GRU-GCN
	Experiments with FGNN
	ModelX

	Discussion & Conclusion

