SHUNT REACTORS 145 KV AND ABOVE

Introduction
These guidelines are mainly based on Standard SS-EN 60076. The guidelines specify alternative in the case of more possibilities and also include additions and elucidations to the standard. The guidelines can be made binding by the client and will then specify the requirements which together with the applicable standard are valid for the design and testing.
<table>
<thead>
<tr>
<th>Revision</th>
<th>Revision note</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Section 2, SS-EN 61869 included.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>9</td>
<td>Section 2, SS-EN 61936-1 included.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>9</td>
<td>Section 2, SEN 280901 included.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>9</td>
<td>Section 2, SS-EN 61558-2-1 included.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>9</td>
<td>Section 2, Cigré Report 673 included.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>9</td>
<td>Section 4.4.1, Table 4.1 updated.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>9</td>
<td>Section 4.4.2, Table 4.2 updated according to SS – EN 61936-1 and IEC 60076-3.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>9</td>
<td>Section 4.4.5, Requirement regarding internal arresters included.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>9</td>
<td>Section 4.6, If not otherwise stated, the cooling type shall be ONAN.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>9</td>
<td>Section 4.8, Requirements regarding core design included.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>9</td>
<td>Section 4.13, Foil windings are normally not accepted.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>9</td>
<td>Section 4.15, Requirements regarding variable shunt reactors included.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>9</td>
<td>Section 5.1, Bushing requirements updated.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>9</td>
<td>Section 5.1, Definition of extended bushing turret clarified</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>9</td>
<td>Section 5.5, Reference to SS-EN 62271-211 included.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>9</td>
<td>Section 5.8.4, Allowed tin layer thickness and temperature for copper terminals updated.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>Section</td>
<td>Update Description</td>
<td>Date</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------</td>
<td>------</td>
</tr>
<tr>
<td>5.8.5</td>
<td>Flat terminal dimensions updated.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>6.2</td>
<td>More options for oil level indication.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>7.2</td>
<td>Each fan group shall equipped with a visible lockable disconnecting switch.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td></td>
<td>Requirements regarding fusing of cooling groups revised.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>8.1</td>
<td>Definition of erection plane clarified.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td></td>
<td>Diameter of padlocks with associated holes clarified.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td></td>
<td>Doors shall be equipped with doorstops.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td></td>
<td>Blind flanges in the bottom of all boxes and cubicles. Flange size in accordance with standard.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>8.2</td>
<td>Boxes and cubicles shall have self-ventilation.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td></td>
<td>Certain cubicles shall always be equipped with thermal insulation.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td></td>
<td>Optimisation of heater switch on and switch off temperatures.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Requirements regarding terminal blocks updated.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>9.1</td>
<td>Location and labelling of metering core specified.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>9.2.6.1.2</td>
<td>Rated output for rated currents 2500 A modified. Accuracy class shall range from 1 VA to 7.5 VA.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>9.2.6.1.2</td>
<td>Accuracy class for metering cores simplified.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>9.2.6.4</td>
<td>Requirements regarding secondary winding resistance for relay cores included.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>10</td>
<td>Power and control cable requirements supplemented.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Date</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>11.1</td>
<td>Tank bottom shall be self-supported.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>11.1</td>
<td>Requirements regarding welders, welding and preparation grade clarified.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>11.3</td>
<td>Requirements regarding ladder slip protection and fasten eyelets.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>11.3</td>
<td>Requirements regarding opening and sealing of welded covers included.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>11.5</td>
<td>Requirements regarding designation plates.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>11.6.3</td>
<td>A possibility for heat recovery is included.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>11.7</td>
<td>Requirements regarding pressure relief valve updated.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>11.8</td>
<td>Requirements regarding surge arresters and earthing of surge arresters changed. Surge arresters may be a part of the delivery, if a bracket is specified.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>11.9</td>
<td>Requirements regarding seals and gaskets completely updated.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>11.10</td>
<td>Transportation must be possible on railway wagons with home location in Sweden.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>11.10</td>
<td>Reactors having a transport mass 80 tons and above shall be possible to transport by wagons, hanging on brackets between the beams.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>11.10</td>
<td>Reference to the Swedish Transport Administration document “Network Statement” included.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>11.10</td>
<td>Erection of reactors clarified. If wheels are specified, wheel holders shall be included in the supply.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>11.10</td>
<td>Requirements regarding anti-vibration plates.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>11.10</td>
<td>The limit where only one impact recorder is required, is increased.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>11.13</td>
<td>Sound reduction tank constructions restricted.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Date</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>12.2</td>
<td>Surface treatment for connection boxes, cubicles and OLTC motor drive simplified. Corrosion category modified.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>12.3</td>
<td>Requirement for washers included. Screws, washers and nuts shall be of acid proof steel.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>12.4</td>
<td>Surface treatment for radiators clarified.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>12.5</td>
<td>Surface treatment for coolers, fans and pumps clarified.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>13.2.1</td>
<td>If specified, the lower end of the neutral bus shall be provided with four holes.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>13.3</td>
<td>Protective earthing shall be arranged by means of a visible green/yellow earthing connection.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>13.3.2</td>
<td>The current transformers shall be earthed by a cable with grey insulation.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>13.3.2</td>
<td>A plate “Ansluts till marklinenät” shall be located in the vicinity of the accessing point.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>14.1</td>
<td>Oil used at FAT shall be compatible with the delivered oil.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>14.3</td>
<td>Additional requirements for the main conservator design included.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>15.1</td>
<td>All plates shall be in Swedish. English languish can be accepted for plates belonging to accessories from sub suppliers. Outdoor plates shall be weather resistant.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>15.1.6</td>
<td>Oil diagram plate requirement updated.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>15.2</td>
<td>Requirements regarding terminal markings included.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>19.7.2.2</td>
<td>For PD-levels >100 pC an explanation must be presented.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>19.7.3</td>
<td>For variable shunt reactors, sound level measurement shall be performed at the tapping giving the highest core flux density.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>19.7.11</td>
<td>A painting inspection certificate shall accompany the delivery.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Date</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>20.2</td>
<td>Tests in service shall be carried out by the supplier or the client (specified in Data compilation).</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>20.3</td>
<td>The service certificate shall be included in the site test certificates.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>22.3</td>
<td>Documents for approval updated and clarified.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>22.3</td>
<td>Terminal diagram shall be supplemented to the circuit diagram.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>22.3</td>
<td>Drawings in dwg-format required.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>22.3</td>
<td>Each AUTOCAD drawing shall be delivered as an individual file.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>22.3</td>
<td>CD is replaced with USB.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>22.3</td>
<td>Documents for approval shall be supplied in PDF format preferable at agreed common web places or by electronic mail.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>22.4</td>
<td>The instruction manual in paper file shall be delivered in two samples. In addition, a corresponding digital manual in pdf-format shall be delivered.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>22.4</td>
<td>Accessories for programmable equipment shall be attached to the instruction manual.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>22.4</td>
<td>Instructions for all programmable equipment's included.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>22.4</td>
<td>Painting inspection certificate included.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>23</td>
<td>Information to be filled in in Data compilation clarified.</td>
<td>2018-09-03</td>
</tr>
<tr>
<td>23</td>
<td>Revision management included.</td>
<td>2018-09-03</td>
</tr>
</tbody>
</table>
4.14.4 Control equipment insulation levels etc. 22
4.14.5 Disturbance requirements .. 22
4.15 Variable shunt reactors... 23

5 BUSHINGS ... 23
 5.1 General .. 23
 5.2 Marking .. 23
 5.3 Measuring taps .. 23
 5.4 Oil level indication .. 24
 5.5 Special requirements for oil-SF₆ connection assemblies 24
 5.6 Special requirements for cable connection assemblies 24
 5.7 Special requirements for polymeric insulators 24
 5.8 Terminals ... 25
 5.8.1 General .. 25
 5.8.2 Flat terminals ... 25
 5.8.3 Cylindrical terminals ... 25
 5.8.4 Material ... 25
 5.8.5 Flat terminal dimensions .. 26
 5.8.6 Cylindrical terminal dimensions 27
 5.9 Spare bushings ... 27

6 SUPERVISORY EQUIPMENT .. 28
 6.1 Gas and oil actuated relay .. 28
 6.2 Oil level indicator ... 28
 6.3 Temperature gauges (thermometers) .. 28
 6.4 Cooling equipment gauges and transmitters 29
 6.5 On-line dissolved gas monitor .. 29

7 COOLING EQUIPMENT ... 29
 7.1 General .. 29
 7.2 Cooler control equipment ... 29

8 CONTROL EQUIPMENT DESIGN .. 32
 8.1 General design .. 32
8.2 Ventilation, heating and lighting .. 32
8.3 Terminal blocks ... 33
 8.3.1 General .. 33
 8.3.2 Disposition of terminal groups in the control cabinet 33
 8.3.3 Disposition of terminal groups in the current transformer cubicle .. 34

9 BUSHING CURRENT TRANSFORMERS ... 35
 9.1 General ... 35
 9.2 Electrical data ... 35
 9.2.1 Rated primary currents .. 35
 9.2.2 Rated secondary currents ... 35
 9.2.3 Rated continuous thermal current .. 36
 9.2.4 Rated short time currents ... 36
 9.2.5 Insulation levels .. 36
 9.2.6 Cores and windings ... 36
 9.3 Design .. 37
 9.3.1 General .. 37
 9.3.2 Test terminals .. 37
 9.3.3 Secondary terminals ... 37

10 POWER AND CONTROL CABLES .. 38

11 REACTOR TANK .. 38
 11.1 General ... 38
 11.2 Vacuum safety ... 38
 11.3 Cover .. 39
 11.4 Hand holes ... 39
 11.5 Designation plates ... 39
 11.6 Valves ... 39
 11.6.1 General .. 39
 11.6.2 Sampling valves .. 39
 11.6.3 Valves for extra heat exchanger ... 39
 11.7 Pressure relief valve .. 39
 11.8 Surge arresters ... 40
 11.9 Gaskets and seals ... 40
 11.10 Erection, Lifting devices, Transport ... 41
11.11 Gas and oil actuated relay inspection .. 42
11.12 Track gauges .. 42
 11.12.1 General .. 42
 11.12.2 Longitudinal movement .. 42
 11.12.3 Lateral movement ... 43
11.13 Sound proofing .. 44

12 CORROSION PROTECTION AND SURFACE TREATMENT 44
 12.1 Reactor tank, OLTC tank .. 44
 12.2 Connection boxes, cubicles and OLTC motor drive 44
 12.3 Screws etc. ... 45
 12.4 Radiators .. 45
 12.5 Coolers, fans and pumps ... 45

13 EARTHING .. 46
 13.1 Principal earthing diagram ... 46
 13.2 System earthing .. 46
 13.2.1 Neutral point earthing .. 46
 13.3 Protective earthing .. 47
 13.3.1 Reactor tank .. 47
 13.3.2 Connection cubicles and control cabinet 47
 13.3.3 Separately erected cooling equipment 47
 13.3.4 Other equipment.. 47
 13.4 Core earthing ... 47

14 OIL AND OIL SYSTEM .. 47
 14.1 Oil quality requirements ... 47
 14.2 Oil system .. 48
 14.3 Conservator ... 49
 14.4 Dehydrating breather ... 49
 14.5 Oil sampling ... 49
 14.6 On-line monitoring .. 49

15 MARKING .. 49
15.1 Plates .. 49
 15.1.1 Rating plate ... 49
 15.1.2 Diagram plate ... 50
 15.1.3 Accessory plate .. 50
 15.1.4 Oil circuit diagram .. 50
 15.1.5 Bushing current transformer plate and marking 50
 15.1.6 Other plates ... 51

15.2 Terminal markings .. 51

16 INFORMATION IN THE BID .. 51
 16.1 General ... 51
 16.2 Bid content ... 51

17 QUALITY ASSURANCE ... 52
 17.1 Quality and Eco Management Systems .. 52
 17.2 Quality manuals .. 52
 17.3 Quality inspection. Inspection plans .. 52

18 DESIGN REVIEW .. 53

19 FACTORY ACCEPTANCE TESTS. FINAL INSPECTION. 54
 19.1 General ... 54
 19.2 Standards. Testing specifications .. 54
 19.3 Testing environment ... 54
 19.4 Instrumentation .. 54
 19.5 Tolerances .. 54
 19.6 Test results and test reports ... 55
 19.6.1 General .. 55
 19.6.2 Bushing current transformers .. 55
 19.7 Routine tests .. 55
 19.7.1 Measurement of loss (IEC 60076-6, Cl 7.8.6) 55
 19.7.2 Dielectric tests ... 55
 19.7.3 Sound level measurement (IEC 60076-6, Cl 7.8.12) 56
 19.7.4 Measurement of vibration (IEC 60076-1, Cl 7.8.13) 56
 19.7.5 FRA .. 57
19.7.6 Pressure testing ... 57
19.7.7 Bushing current transformers ... 57
19.7.8 Core insulation resistance measurement 57
19.7.9 Winding insulation resistance measurement 57
19.7.10 Tests and inspections on accessories 57
19.7.11 Painting inspection .. 57

19.8 Type tests .. 57
19.8.1 Determination of linearity of reactance (IEC 60076-6, Cl 7.8.5.3) ... 57
19.8.2 Measurement of zero sequence reactance on three-phase reactors (IEC 60076-6, Cl 7.8.8) .. 58
19.8.3 Measurement of mutual reactance on three-phase reactors (IEC 60076-6, Cl 7.8.9) .. 58
19.8.4 Temperature rise test (IEC 60076-6, Cl 7.8.14) 58
19.8.5 Loss of cooling temperature rise test (Addition to IEC 60076-6, Cl 7.8.14) ... 59
19.8.6 Bushing creepage distance verification for polluted conditions ... 59
19.8.7 Bushing current transformers ... 59
19.8.8 Inspection and testing of accessories 60

20 SITE TESTS .. 60
20.1 Tests on a reactor ready for operation 60
20.1.1 400 kV reactors ... 60
20.1.2 All other reactors ... 60
20.2 Tests in service .. 60
20.3 Site test certificates ... 60

21 TIME SCHEDULES .. 61

22 DOCUMENTATION .. 61
22.1 General ... 61
22.2 Tender documents ... 61
22.3 Documents for approval ... 61
22.4 Instruction manual ... 63

TEKNISK RIKTLINJE 2018-09-03 TR01-11E utg 9
1 SCOPE

These guidelines cover three phase 50 Hz oil immersed shunt reactors with highest voltage for equipment 145 kV and above.

2 STANDARDS

If standards referred to have been revised, the ones in force at the ordering date shall be considered as valid. SS-EN documents are the ruling requirements, thereafter CENELEC (EN, HD or TS documents) and thereafter IEC or ISO.

SS-EN / EN / IEC 60076 Power transformers
SS-EN 60076-1 Part 1: General
SS-EN 60076-1/A1 Part 1: Amendment No. A1
SS-EN 60076-1/A12 Part 1: Amendment No. A12
SS-EN 60076-2 Part 2: Temperature rise
SS-EN 60076-3 Part 3: Insulation levels and dielectric tests
IEC 60076-4 Part 4: Guide to the lightning impulse and switching impulse testing – Power transformers and reactors
IEC 60076-6 Part 6: Reactors
IEC 60076-8 Part 8: Application Guide
SS-EN 60076-10 Part 10: Determination of sound levels
IEC 60076-10-1 Part 10-1: Determination of sound levels.- Application guide
IEC 60076-14 Part 14: Design and application of liquid-immersed power transformers using high-temperature insulation materials
SS-EN 50216 Power transformer and reactor fittings
SS-EN 50216-1 Part 1: General
SS-EN 50216-2 Part 2: Gas and oil actuated relay for liquid immersed transformers and reactors with conservator
SS-EN 50216-2/A1 Part 2: Amendment No. A1
SS-EN 50216-4 Part 4: Basic accessories
SS-EN 50216-5 Part 5: Liquid level, pressure devices and flow meters
SS-EN 50216-5/A1 Part 5: Amendment No. A1
SS-EN 50216-5/A2 Part 5: Amendment No. A2
SS-EN 50216-6 Part 6: Cooling equipment – Removable radiators for oil-immersed transformers
SS-EN 50216-7 Part 7: Electric pumps for transformer oil
SS-EN 50216-8 Butterfly valves for insulating liquids
SS-EN 50216-10 Oil-to air heat exchangers (not published)
SS-EN 10088-3 Stainless steel – Part 3: Technical delivery conditions for semi-finished products, bars, rods, wire, sections and bright products of corrosion resisting steels for general purpose
SS-EN 50180 Bushings above 1 kV up to 36 kV and from 250 A to 3.15 kA for liquid filled transformers
SS-EN 50299 Oil-immersed cable connection assemblies for transformers and reactors having highest voltage for equipment Um from 72.5 to 550 kV
CLC TS 50458 Capacitance graded outdoor bushings 52 kV up to 420 kV for oil immersed transformers (not published)
IEC 60038 IEC standard voltages
SS-EN 61869-1 Instrument transformers-Part 1: General requirements
SS-EN 61869-2 Instrument transformers-Part 2: Additional requirements for current transformers
SS-EN 60071 Insulation co-ordination; Part 1, 2 and 5
SS-EN 60137 Insulating bushings for alternating voltages above 1000 V
SS-EN 60296 Fluids for electro technical applications - Unused mineral insulating oils for transformers and switchgear
SS-EN 60507 Artificial pollution tests on high-voltage insulators to be used on a.c. systems
SS-EN 60529 Degrees of protection by enclosures (IP code)
IEC TR 60616 Terminal and tapping markings for power transformers
SS-EN 60617 Graphical symbols for diagrams
SS-EN 60664-1 Insulation co-ordination for equipment within low-voltage systems
IEC TR 60815 Guide for the selection of insulators in respect of polluted conditions
SS-EN 61000 Electromagnetic compatibility; Part 1 - 6 (IEC or EN shall apply if no SS-EN standards are published)
SS-EN 61140 Protection against electric shock – Common aspects for installation and equipment
SS-EN 61936-1 Power installations exceeding 1 kV a.c. - Part 1: Common rules
IEC TR 61462 Composite insulators – Hollow insulators for use in outdoor and indoor electrical equipment – Definitions, test methods, acceptance criteria and design recommendations
IEC 62155 Hollow pressurized and unpressurized ceramic and glass insulators for use in electrical equipment with rated voltages greater than 1000 V
SS-EN ISO 1461 Hot dip galvanized coatings on fabricated iron and steel articles – Specifications and test methods
SS-EN ISO 9001 Quality systems – Requirements
SS-EN ISO 10684 Fasteners – Hot dip galvanized coatings
SS-EN ISO 12944 Paints and varnishes – Corrosion protection of steel structures by protective paint systems; Part 1 - 8
SS-EN ISO 14001 Environmental systems – Requirements with guidance for use
SS-ISO 6708 Pipe work components – Definition and selection of DN (nominal size)
SS 14 2324 Stainless steel – SS steel 23 24
SS-EN 61936-1 Power installations exceeding 1 kV AC-General
SS-EN 50522 Power installations exceeding 1 kV AC-Earthing
SS-EN 1092-1 Flanges and their joints – Circular flanges for pipes, valves, fittings and accessories, PN-designated-Part 1
SS-EN 12560-1 Flanges and their joints – Gaskets for Class-designated flanges-Part 1
SS-EN 1514-1 Flanges and their joints – Dimensions of gaskets for PN-designated flanges-Part 1
3 OPERATING CONDITIONS

3.1 Mode of operation
The reactors shall if not otherwise specified be designed for outdoor erection and continuous operation.
The reactors will be switched in and out once a day as an average.

3.2 Ambient temperature
As a lower limit of ambient air temperature –40°C shall apply (Deviation from SS-EN 60076-1, Cl 4.2).

For all equipment due consideration shall be taken to the increased maximum ambient temperature caused by the temperature of the reactor tank which is assumed to reach 105 °C on the cover. The lower limit ambient temperature –40°C shall be accounted for as well.

For built in bushing current transformers the following shall apply (if not otherwise verified by the supplier):

- maximum ambient temperature 115°C
- maximum daily average temperature 105°C

3.3 Network data
If not otherwise stated the system earthing conditions are given in Table 3.1 and the maximum network short circuit power levels are given in Table 3.2. If not otherwise
stated the given range of the ratio between the zero sequence impedance and the positive sequence impedance shall be valid.

<table>
<thead>
<tr>
<th>Highest voltage for equipment, U_m (kV)</th>
<th>System earthing</th>
<th>X_0/X_+</th>
</tr>
</thead>
<tbody>
<tr>
<td>145 – 170</td>
<td>Effectively earthed</td>
<td>1 – 3 (IEC)</td>
</tr>
<tr>
<td>245</td>
<td>"-"</td>
<td>1 – 3 (IEC)</td>
</tr>
<tr>
<td>420</td>
<td>"-"</td>
<td>1 – 3 (IEC)</td>
</tr>
</tbody>
</table>

Table 3.1 System earthing

<table>
<thead>
<tr>
<th>Highest voltage for equipment (kV)</th>
<th>Short circuit power (reference voltage = U_m) (MVA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>145 – 170</td>
<td>10000</td>
</tr>
<tr>
<td>245</td>
<td>17000</td>
</tr>
<tr>
<td>420</td>
<td>25000</td>
</tr>
</tbody>
</table>

Table 3.2 Network short circuit power

3.4 Specific site conditions

The supplier shall claim detailed information of how the reactor would be installed at site. If the client in "Compilation of technical data" requires a site installation other than "in open air", the supplier shall, dependent on kind of site installation, give information about minimum distances around the reactor. A drawing with a proposal of the reactor arrangement shall be enclosed with the tender. The reactor shall be constructed in such a way that the allowed temperature rises shall not exceed the stated requirements in IEC 60076 on site. Protective walls shall allow the cooling equipment to be located inside. Protective walls for the purpose of sabotage protection shall, if built by Svenska kraftnät, alternatively financed by Svenska Kraftnät funds aimed for emergency management, fulfil the requirements stated in TR09-15.

4 ELECTRICAL DATA AND OTHER MAIN CHARACTERISTICS

4.1 Ratings

For 420 kV power rating 165 Mvar shall be selected if not other specified. For other voltages, the power rating shall be specified in the tender.

4.2 Connection symbol

The reactors shall normally have the connection symbol YN.
4.3 Tapping range
Tappings are normally not required.

4.4 Insulation levels, creepage distances and air clearances.

4.4.1 Insulation levels
Insulation levels shall fulfil the requirements in Table 4.1.

<table>
<thead>
<tr>
<th>Highest voltage for equipment (kV)</th>
<th>Insulation level according to IEC 60076-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>145 – 170</td>
<td>LI550 AC230 – LI125 AC50</td>
</tr>
<tr>
<td>245</td>
<td>SI750 LI850 – LI125 AC50</td>
</tr>
<tr>
<td>420</td>
<td>SI1050 LI1300 - LI125 AC50</td>
</tr>
</tbody>
</table>

Table 4.1 Highest voltage for equipment and insulation levels

Note 1 For phase to phase insulation the following addition shall apply

- 145 – 170 kV LI550 AC 275
- 245 kV SI750 LI850
- 420 kV SI1050 LI1300

4.4.2 Air clearances
The requirements on minimum air clearances are summarised in Table 4.2.

<table>
<thead>
<tr>
<th>Highest voltage for equipment, Um (kV)</th>
<th>Minimum free air clearance phase - earth (mm)</th>
<th>Minimum free air clearance phase - phase (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>145 – 170</td>
<td>1100</td>
<td>1100</td>
</tr>
<tr>
<td>245</td>
<td>1700</td>
<td>2300</td>
</tr>
<tr>
<td>420</td>
<td>2600</td>
<td>3600</td>
</tr>
</tbody>
</table>

Table 4.2 Minimum air clearances

Notes to Table 4.2:
- Air clearances for 170 kV and below are based upon SS – EN 61936-1
- Air clearances for 245 and 420 kV are based upon SS EN 60076-3
- The air clearance is assumed to be measured from bushing live parts
- In some cases the clearances have to be increased to account for the size of connectors.

4.4.3 Creepage distances
The creepage distance requirements for ceramic and polymeric insulators in clean and polluted environment are summarised in Table 4.3.
Table 4.3 Creepage distances

<table>
<thead>
<tr>
<th>Highest voltage for equipment, Um (kV)</th>
<th>Ceramic type</th>
<th>Polymeric type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class I (mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>145 – 170</td>
<td>2750</td>
<td>2050</td>
</tr>
<tr>
<td>245</td>
<td>6000</td>
<td></td>
</tr>
<tr>
<td>420</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td>Polluted environment Class II and III (mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes to Table 4.3:
- Pollution classes according to IEC 60815
- For an alternative method of ceramic type insulator performance in polluted environment refers to Clause 19.8.6. in this guideline.
- For polymeric insulators the creepage distance is not a relevant parameter for the performance in polluted environment. For the performance verification refer to Clause 19.8.6. in this guideline.
- For reactors having highest voltage for equipment 245 and 420 kV environmental Class II shall apply.
- The ratio (creepage distance) / (insulator length) must not exceed 3.5 for ceramic type insulators.
- In case of environmental Class II or III the insulator shall be designed with alternating short and long sheds, i.e. of the self-cleaning type.
- Creepage distances are given as minimum length.

4.4.4 Safety distances for inspection platform

For the design of the inspection platform and its ladder minimum safety distances equal to the earth air clearance above increased by 6% shall apply. When applying this the distance from the neck to the fingertip is assumed to be 900 mm and the distance from the neck to the sole of the foot to be 1600 mm.

4.4.5 Internal arresters

Internal arresters shall normally not be used. However, in some special cases they may be used, but only after written approval by the client.

4.5 Loading capability

4.5.1 General

If not otherwise explicitly stated it shall be possible to operate the reactors continuously at maximum voltage 1.1 pu of rated voltage \(U_{\text{max}}=1.1 \times U_r\), however, not higher than the highest voltage for equipment without exceeding the allowable standardised temperature rises, including winding hot spot temperature rise.

If not otherwise explicitly stated, it shall be possible to operate the reactor at 105% of rated voltage, irrespective of highest voltage for equipment.

At an ambient temperature of about 20 °C, rated voltage and steady state it shall be possible to operate the reactors for one hour with disconnected cooler power supply.
(not applicable for cooling type ONAN) without any damages in the reactor (i.e. the core and winding hot spot temperatures must not exceed 140 °C).

Bushings and other accessories shall be selected in such way that they can carry currents above the corresponding winding rated current of at least the same amplitude and for the same duration as the reactor itself can withstand.

For built in current transformers refer to Clause 9.

The reactor neutral and its bushings as well as built in bushing current transformers shall have the same loading capability as the corresponding line terminals.

4.6 Type of cooling

If not otherwise stated, the cooling type shall be ONAN. Other cooling types may be accepted after written approval.

For type OD.. cooling the same maximum allowable temperature rise as for type OF.. shall apply (Deviation from SS-EN 60076-2, Cl 4.2). Furthermore when disconnecting a fully loaded reactor at max ambient temperature it shall not be required to pump oil through the windings, i.e. no post tripping cooling.

4.7 Sound levels

If not otherwise specified the sound power levels in Table 4.4 shall apply:

<table>
<thead>
<tr>
<th>Rated power Mvar</th>
<th>Sound power level – LWA dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>77</td>
</tr>
<tr>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>63</td>
<td>83</td>
</tr>
<tr>
<td>100</td>
<td>86</td>
</tr>
<tr>
<td>165</td>
<td>90</td>
</tr>
<tr>
<td>200</td>
<td>92</td>
</tr>
</tbody>
</table>

Table 4.4 Maximum allowed sound power levels

A positive tolerance of +0 dB(A) shall be valid.

The sound power level LWA shall be measured in accordance with IEC 60076-10 and shall apply both with and without cooling equipment in operation.

For variable shunt reactors, sound level measurement shall be performed at the tapping giving the highest core flux density.

In case of separately erected cooling equipment maximum allowable sound level will be specified in every single case.

For intermediate sizes linear interpolation shall be used.

Factory measured sound power level shall be rounded off to the closest integer value before comparison with the guarantee level.
4.8 Core design
If not otherwise specified the reactor core shall be of five limbed core type. Three
limbed core or shell type may be used in special cases if explicitly specified in the
inquiry.

4.9 Tank vibrations
In operation at rated voltage, rated frequency and normal operating temperature, the
vibration amplitude must not exceed 200 μm peak-to-peak value.

4.10 Harmonic production
For reactors having effectively earthed neutral points the following shall apply:
If connected to a 50 Hz voltage equal to rated voltage free of distortion the total r.m.s.
value of current harmonic No. three (150 Hz) and higher must not exceed 0.5 % of the
line current.

4.11 Reactance unbalance
The phase reactances of reactors having highest voltage for equipment $U_m \geq 145$ kV
must not deviate from the average by more than 1 %.

4.12 Inrush current
The manufacturer shall state a guarantee level of the maximum amplitude of the
inrush current. In addition the manufacturer shall state calculated r.m.s. value and
time to half value of the line and neutral point currents when switching in the reactor
in the most unfavourable phase position and at the highest overexitation according to
Clause 4.5. It is then assumed that all breaker poles close at the same instant and the
network having data according to Clause 3.3 Network Data.

4.13 Winding design
The manufacturer shall state the depolymerisation number (DP) of the insulation
paper used in the windings:

- New paper from the paper sub-supplier (actual value)
- Processed and tested reactor ready for shipping (calculated value)

Thermally upgraded paper is to be used.

Foil windings are normally not accepted.

The reactor shall be designed in such a way that copper sulphide deposition will be
prevented. Copper winding wires shall always be equipped with a high temperature
varnish layer. The varnish layer shall be designed for hot spot temperatures according
to IEC 60076-7.
4.14 Other data

4.14.1 Supply voltages for motors, control equipment etc.:

4.14.1.1. Cooling equipment motors
400/230 V ac

4.14.1.2. Cooling equipment control
- operation voltage 230 V ac, single phase
- signalling voltage 110 V or 220 V dc

4.14.1.3. Other control equipment
- operation voltage 110 or 220 V dc
- signalling voltage 110 or 220 V dc

4.14.1.4. Lighting and heater
230 V ac, single phase

Maximum voltage variation -15% to +10% shall apply at the connection point of apparatuses.

4.14.2 Contact breaking capacity
Contacts for external use shall at least have the following breaking capacity if not otherwise specified in the relevant transformer fitting standard (SS-EN 50216):
- 0.15 A at 220 V dc and L/R = 40 ms
- 0.30 A at 110 V dc and L/R = 40 ms

4.14.3 Enclosure class and degree of protection
Apparatuses and connection boxes shall at least fulfil enclosure class IP45 according to SS-EN 60529 and degree of protection Class I according to SS-EN 61140.

4.14.4 Control equipment insulation levels etc.
The following insulation categories in accordance with SS-EN 60664-1 shall apply:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Over voltage category</th>
<th>Material group</th>
<th>Pollution degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal blocks</td>
<td>III</td>
<td>I</td>
<td>2</td>
</tr>
<tr>
<td>Current transformer</td>
<td>IV</td>
<td>I</td>
<td>2</td>
</tr>
<tr>
<td>Circuits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motors</td>
<td>IV</td>
<td>I</td>
<td>2</td>
</tr>
<tr>
<td>Other parts</td>
<td>IV</td>
<td>I</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 4.5 Insulation categories

4.14.5 Disturbance requirements
Control equipment, cooling equipment and on-load tap-changer motor drive equipment shall fulfil the requirements set up in SS-EN 61000.
4.15 Variable shunt reactors
The adjustment method shall be stepwise control, in which an OLTC is used to change the number of turns on the shunt reactor winding. All requirements regarding on-load tap-changers and equipment related to on-load tap-changers, stated in TR01-10E, are valid for variable shunt reactors.

5 BUSHINGS

5.1 General
Condenser type bushings shall be used. Applicable standard is SS-EN 60137. Bushings shall be of either resin impregnated paper (RIP) or resin impregnated synthetic (RIS) type.

Ceramic type bushing shall fulfil SS-EN 50180, SS-EN 50243 or SS-EN 50386. Deviations may be made for the connection details on the oil side but first after written approval from the client.

For each combination of highest voltage for equipment and insulation level only one type of bushing is allowed.

Extended bushing turrets may be specified to facilitate future installation of a sound level reduction enclosure. The height (d) of an extended bushing turret shall comply with Figure 5.1 below.

\[d \geq 500 \text{ mm} \]

\[\alpha \leq 90^\circ \]

Figure 5.1 Extended bushing turret.

5.2 Marking
Each bushing shall have a rating plate showing the identification, e.g. type and catalogue No. On smaller bushings this can be stamped into the top bolt or the flange or on a separate plate on the reactor.

5.3 Measuring taps
Phase bushings for highest voltage for equipment Um ≥ 145 kV shall be equipped with measuring taps. The taps shall normally be short circuited.
5.4 Oil level indication
Oil filled bushings for highest voltage for equipment Um ≥ 245 kV shall be provided with oil level indication.

5.5 Special requirements for oil-SF₆ connection assemblies.
Requirements given in SS-EN 62271-211 shall apply.

The reactor supplier shall provide a detailed description of the oil level and pressure supervision system for the bushings.

It is the reactor supplier’s responsibility to make such arrangements that short circuit bridges have no harmful impact on the reactor.

The overall responsibility of the interface lies on the reactor supplier.

Other requirements such as pressure supervision, expansion chambers, level indication etc. are specified in every single case.

5.6 Special requirements for cable connection assemblies.
For highest voltage for equipment 145 kV and above the requirements given in SS-EN 50299 and SS-EN 50299C1 shall apply.

The overall responsibility of the interface lies on the reactor supplier.

Other requirements such as cable box with SF₆, oil or air etc. are specified in every single case.

5.7 Special requirements for polymeric insulators.
The sheds shall be of a polymeric material, formed from silicone. The final polymer compound after the addition of functional fillers shall contain at least one-third pure silicone rubber, but shall not contain any ethyl vinyl acetate (EVA), ethyl propylene rubber (EPR), ethylene propylene diene monomer (EPDM) or other UV-sensitive material. Only high temperature vulcanized silicone rubber (HTV) or liquid silicone rubber (LSR) shall be used. Room temperature vulcanized silicone rubber (RTV) shall not be used in high voltage applications.

Tracking resistance 4.5 kV in class 1A per IEC 60587
Recovery of hydrophobicity: WC 1-3 (IEC TS 62073) 48 hours after hydrophobicity weakening by 96 h immersion in distilled water at room temperature.

All hollow silicone composite insulators shall comply with the requirements of the IEC publication IEC 61462 and the relevant parts of IEC 62217. The design of the composite insulators shall be tested and verified according to IEC 61462 (design test and type test). Each composite insulator shall undergo routine tests according to IEC 61462.
5.8 Terminals

5.8.1 General
Current carrying connections including screws, nuts and washers necessary for the connection of external conductors are to be provided by the client in case of capacitance graded bushings.

The terminals shall primarily be provided with flat terminals (flags). Cylindrical terminals are accepted in those cases were the terminal is a natural termination of the internal conductor arrangement.

5.8.2 Flat terminals
The flat terminal shall fulfil the dimension requirements below. To admit the assembly of the current carrying connection there must be a free space of minimum 5 mm between the flat terminal and the apparatus to be connected.

The size of the flat terminal shall be selected from Table 5.1 below:

<table>
<thead>
<tr>
<th>Size</th>
<th>Highest voltage for equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 - 40</td>
<td>400 A</td>
</tr>
<tr>
<td>4 - 75</td>
<td>630 - 1250 A</td>
</tr>
<tr>
<td>9 - 125</td>
<td>1600 - 3150 A</td>
</tr>
<tr>
<td>12 - 165</td>
<td>4000 A</td>
</tr>
</tbody>
</table>

Table 5.1 Flat terminals

5.8.3 Cylindrical terminals
The cylindrical terminal shall fulfil the dimension requirements below. The terminal shall be secured against rotation.

The size of the cylindrical terminal shall be selected from Table 5.2 below:

<table>
<thead>
<tr>
<th>Size</th>
<th>Rated apparatus current</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aluminium terminal</td>
</tr>
<tr>
<td>30</td>
<td>800 - 1250 A</td>
</tr>
<tr>
<td>40</td>
<td>1600 A</td>
</tr>
<tr>
<td>60</td>
<td>2000 - 2500 A</td>
</tr>
</tbody>
</table>

Table 5.2 Cylindrical terminals

5.8.4 Material
Terminals of copper or a copper alloy must not exceed a temperature of 105 °C and shall be tin coated to layer thickness of at least 10 µm. Copper alloy sensitive to stress corrosion must not be used.
Terminals of aluminium or an aluminium alloy must not be surface treated. In case of an alloy this shall have the same corrosion resistance as pure aluminium. Aluminium alloy sensitive to stress corrosion, layer corrosion or grain boundary erosion must not be used.
Flat terminal of aluminium or an aluminium alloy shall have a hardness of at least H_B min 75.
5.8.5 Flat terminal dimensions

Size: 2-40
\(t \geq 10, \phi = 14 \)

Figure 5.2 Flat terminal size 2-40

Size: 4-75
\(t \geq 15, \phi = 14 \)

Figure 5.3 Flat terminal size 4-75

Size: 9-120
\(t \geq 35, \phi = 14 \)

Figure 5.4 Flat terminal size 9-125
5.8.6 Cylindrical terminal dimensions

5.9 Spare bushings
In the inquiry preferred bushings may be stated based upon the available spares. If quoted bushings do not comply with the preferred ones spare bushings shall be included in the tender.
6 SUPERVISORY EQUIPMENT

The reactors shall normally be provided the following gauges. These shall have a prompt making and breaking function.

In order not to prevent the development of new technologies other configurations may be accepted, however, only after written approval.

6.1 Gas and oil actuated relay
The gas and oil actuated relay shall be provided with two electrically separate contacts:

- One closing for slow gas formation to be used for alarm.
- One closing for heavy gas formation, heavy oil flow and low oil level to be used for tripping.

The relay shall be provided with shut off valves as well as a by-pass with no shut off possibility in order to facilitate relay exchange when the reactor is in service.

Gas sampling and functional testing shall be possible to carry out when the reactor is in service.

The relay shall be located in such a way that a person executing testing or replacement work standing on a ladder or on the platform according to Clause 11.11 can not reach within the safety distance according to Clause 4.4.4. If specified, a device for gas sampling at service level shall be included.

6.2 Oil level indicator
The oil level indicator shall have making contacts closing at too high and too low oil level. If specified, one extra contact shall be provided, closing at a level 5% (North Sweden) or 15% (South Sweden) above the “too low” oil level. The contacts will be used for signalling.

The oil level indicators shall be located at service level (not on the conservator) and, if specified, be provided with remote indication possibility (potentiometer).

To prevent water from dripping into oil level indicators a drip protection or a protruded roof shall be provided.

6.3 Temperature gauges (thermometers)
The temperature gauge shall at least have four independently adjustable contacts closing when the temperature reaches the adjusted value. The contacts shall be electrically separated. One contact shall be used for signalling/tripping the others will be used optionally e.g. for control of cooling.

The temperature gauge shall be provided with a legible maximum pointer resettable from the outside.

The reactors shall be provided with one temperature gauge for top oil temperature. The location of the thermometer pocket shall allow the outgoing top oil to the cooling equipment to be measured.
The temperature gauge shall be provided with Pt100 resistors for remote temperature indication.

In addition to thermometer pocket for the above gauge there shall be one extra thermometer pocket.

To prevent water from dripping into the thermometers a drip protection or a protruded roof shall be provided.

6.4 Cooling equipment gauges and transmitters
In case of OF/OD.. cooling oil flow gauges having contacts closing, in case the oil pump is in operation, at too low oil flow shall be provided. Contact closing shall occur also in case of wrong oil flow direction.

6.5 On-line dissolved gas monitor
If specified, 420 kV reactors shall be equipped with an on-line dissolved gas monitor indicating at least a weighted sum of some of the combustible gases and moisture in the oil.

There shall be at least 4–20 mA signals for remote indication of gases and moisture.

The power supply to the monitors shall be 110 V or 220 V dc.

7 COOLING EQUIPMENT

7.1 General
For cooling by means of oil pumps, all components having circulating oil must withstand an internal overpressure of 0.3 MPa(e) without any leakage the oil having a temperature of 90 °C.

The manufacturer shall if requested take part in the design of the site as to cooler location and thereby also guarantee that the necessary cooling air will be supplied according to Clause 3.2.

In case of separately mounted coolers the necessary cabling and piping as well as assembly shall be included in the supply.

7.2 Cooler control equipment
In the normal case the top oil thermometer will control the coolers. Spare terminal blocks for connection of another type of cooling control such as a current relay for current control or a breaker auxiliary contact shall be provided.

It shall be possible to control the oil pumps by an auxiliary contact of the reactor breaker.

The ac power supply shall be arranged in accordance AFS 2008:03, Cl 1.6.3 ”Frånkoppling av kraftkällor“ (”Disconnection of power sources“). Each fan group shall be equipped with a visible lockable disconnecting switch.
The control circuits shall be voltage supervised and this signal shall be separated from all other signals. This facility may be used to block the closing of the reactor circuit breaker.

The control shall normally have one switch with a handle for operation mode selection.

The switches shall be labelled:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FRÅN</td>
<td>(off)</td>
</tr>
<tr>
<td>TILL</td>
<td>(on)</td>
</tr>
<tr>
<td>VAKT t1</td>
<td>(gauge t1)</td>
</tr>
<tr>
<td>VAKT t2</td>
<td>(gauge t2)</td>
</tr>
</tbody>
</table>

| temperature setting t1<t2 |

Table 7.1 Cooling selector

For cooling types including pumps, each cooling group must contain the same number of pumps and fans. For cooling type OD., without radiators, the first cooling group must be switched on when the transformer is energized. For remaining cooling types, including pumps, the first cooling group is governed by gauge t1.

Each motor shall have its own motor protective switch having both manual and automatic operation.

The motor protective switch shall have at least one auxiliary contact which is closed when the switch is open. This contact will be used for signalling at protective switch tripping.

The motor protective switches must not be provided with under-voltage protection.

Motor protections and contactors (auxiliary relays) in each cooling group shall at least be provided with one miniature circuit breaker (MCB).

The complete control circuit shall be protected by a circuit breaker and be provided with voltage supervision. Provisions for disconnection in case of fire or risk of fire shall be provided.

Staggered switching may become necessary if found advantageous from the dimensioning point of view.

In case of cooling equipment power consumption higher than 20 kW half the number of fans must be delayed in order to limit the total starting current.

The manufacturer shall state the maximum value and duration of the total starting current at simultaneous start of all motors as above. Taking the selectivity into account information shall also be given on which size and type is applicable for the main circuit breaker through which the complete cooling equipment is fed.

The principal cooling equipment circuit is given in the principal cooling circuit diagram below.
Figure 7.1 Principal cooling circuit diagram
8 CONTROL EQUIPMENT DESIGN

8.1 General design
The control equipment shall be assembled functionally and be subdivided as follows:

- Supervisory equipment
- Cooling equipment

Current transformer terminals shall always be connected in a separate cubicle.

The control equipment shall be designed and assembled to withstand occurring reactor vibrations.

Boxes and cubicles shall be lockable by means of a padlock ($\varnothing_{\text{padlock}}=5-6$ mm, $\varnothing_{\text{hole}}=8-10$ mm) and located for easy access. Doors shall be equipped with doorstops. The cubicles shall always be mounted on the reactor tank so that it is readily and safely accessible from ground level with the reactor in service. Cables shall normally be connected from below why the underside shall be at least 600 mm above the erection plane, including oak planks, supports, wheels or skids. The bottom of all boxes and cubicles shall be equipped with blind flanges for connection of external cables. Flange sizes shall be selected in accordance with standard SEN 280901, for instance FL21.

All components shall be provided with individual markings for easy identification in the circuit diagram.

8.2 Ventilation, heating and lighting
Boxes and cubicles shall have draining and self-ventilation. As protection for insects openings shall be provided with e.g. nets having a mesh size of about 1 mm.

To prevent water dripping into the boxes or the cubicles a dripping protection or a protruded roof shall be provided.

If applicable, boxes and cubicles for the on-load tap-changer drive and for the cooling equipment shall be provided with lighting and an earthed 230 V socket with a residual current circuit breaker. A heater to prevent condensation shall also be provided.

Boxes or cubicles containing equipment which requires extra heating to secure its function at -40°C ambient temperature the heater shall be controlled by a thermostat. Switch on and switch off temperatures of the thermostat shall be optimised with respect to a low temperature in combination with avoidance of moisture. An extra thermostat shall be provided to give an alarm before the temperature drops below the limit of safe equipment function.

If applicable, it shall be provided a possibility to feed the heating and lighting in the on load tap changer motor drive and control cabinet from the station local power supply.

Cubicles containing cooling control equipment shall always be provided with thermal insulation. Thermal insulation shall be of incombustible material.

Heaters shall be protected against unintentional contact.
8.3 Terminal blocks

8.3.1 General

Connection blocks shall be of disconnecting type, Phoenix URTK/S or Weidmüller WTL6/1 EN STB. Other types may be accepted after written agreement.

Terminals shall preferably be placed horizontally and opened down. In case of vertical location, terminals shall be opened to the left. Connection blocks for 230 and 400 VAC shall have labels, indicating their purpose. These terminals must be touch protected and separated from other terminals blocks. If more than one conductor is connected to a terminal same cross section must be used.

All cubicles shall have 8 mm wide slide link type disconnect terminal blocks.

Terminal blocks shall be suitable for the connection of conductors having a cross section of 1-10 mm² (single stranded) and 1 - 6 mm² (multi stranded).

Terminal blocks for the motor power supply shall have a size governed by its purpose.

All cables coming from the outside shall be connected to the one side of the terminal groups and all the internal cables to the other one. Maximum two conductors may be connected to one terminal.

The terminal blocks shall be located for easy access. For the connection of incoming conductors minimum 100 mm free space along the complete terminal row shall be provided.

The terminal block labelling shall begin on 1 within each group.

All components shall be provided with individual markings for easy identification in the circuit diagram.

8.3.2 Disposition of terminal groups in the control cabinet

The main cabinet terminal blocks should be functionally grouped like the following sample disposition

<table>
<thead>
<tr>
<th>Terminal group</th>
<th>Use</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>Power supply and auxiliary supply</td>
<td>Power supply to have lower numbers than auxiliary power</td>
</tr>
<tr>
<td>X10</td>
<td></td>
<td>Incoming feeder to have lower number than outgoing.</td>
</tr>
<tr>
<td>X11</td>
<td>Pumps, fans</td>
<td>Pumps to have lower numbers than fans. Signalling and indication in group X50</td>
</tr>
<tr>
<td>X50</td>
<td>Flow indicators, manometers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooler circuit faults</td>
<td></td>
</tr>
<tr>
<td>X54</td>
<td>Gas and oil actuated relay</td>
<td></td>
</tr>
<tr>
<td>X55</td>
<td>Oil level indicator</td>
<td></td>
</tr>
<tr>
<td>X56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X57</td>
<td>Remote cooler control</td>
<td>E.g. reactor breaker</td>
</tr>
</tbody>
</table>
8.3.3 Disposition of terminal groups in the current transformer cubicle

8.3.3.1 Disposition

The terminal blocks shall be grouped as follows:

<table>
<thead>
<tr>
<th>Terminal group</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>X11</td>
<td>Core No. 1 for all three phases</td>
</tr>
<tr>
<td>X12</td>
<td>Core No. 2 for all three phases</td>
</tr>
<tr>
<td>X13</td>
<td>Core No. 3 ...</td>
</tr>
<tr>
<td>X14</td>
<td>Core No. 4 ...</td>
</tr>
<tr>
<td>X15</td>
<td>Core No. 5 ...</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>X101</td>
<td>Core No. 1 in the neutral</td>
</tr>
<tr>
<td>X102</td>
<td>Core No. 2 "-</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Table 8.2 CT cubicle terminal blocks

- **8.3.3.2. Terminal numbering for current transformers around phase bushings**

 Example: Core No. 2 of the highest voltage winding

![Figure 8.1 Phase CT terminal block numbering](image)

Table 8.1 Control cabinet terminal blocks

<table>
<thead>
<tr>
<th>Terminal group</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>X61</td>
<td>Temperature transmitter</td>
</tr>
<tr>
<td>X70</td>
<td>If supply from current transformer this shall be connected to this group</td>
</tr>
<tr>
<td>X91</td>
<td>Gauges for oil-SF6 bushings</td>
</tr>
<tr>
<td>X99</td>
<td></td>
</tr>
</tbody>
</table>
8.3.3.3. Terminal numbering for current transformers around neutral bushings

Example: Core No. 1 for the neutral terminal

![Terminal numbering diagram]

Figure 8.2 Neutral CT terminal block numbering

9 BUSHING CURRENT TRANSFORMERS

9.1 General

Of redundancy reasons one of the relaying cores in each phase shall be connected to the terminal box by a separate cable.

The bushing current transformer shall be mounted with P2 closest to the reactor. The test conductor terminal marking, M, shall correspond to P1.

The metering core(s) shall be located closest to the bushing and be labelled No. 1(-2).

9.2 Electrical data

9.2.1 Rated primary currents

The current transformers shall be designed for a rated primary current according to Table 9.1. The highest rated current should be the value closest above 1.0 times the reactor rated current.

<table>
<thead>
<tr>
<th>Phase bushing (A)</th>
<th>Neutral bushing (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

Table 9.1 Rated bushing CT currents

9.2.2 Rated secondary currents

Rated secondary current shall be 1 A. In some cases 2 A will be specified in line with the old company standard.
9.2.3 Rated continuous thermal current
The rated continuous thermal current shall be 1.1 times rated current of the reactor.

9.2.4 Rated short time currents
The current transformers shall be capable of withstanding a primary rated short-time current for 1 sec of at least 15 times the rated primary current, however, not higher than 50 kArms.

9.2.5 Insulation levels
The current transformers shall fulfil the requirements in SS-EN 61869-2.

9.2.6 Cores and windings

9.2.6.1 Phase bushings
9.2.6.1.1 General
The current transformers shall be designed with three, four or five cores:

- Maximum four relaying cores
- Maximum two metering cores

Each core shall have its own secondary winding which shall be electrically completely separated from the other windings.

9.2.6.1.2 Accuracy classes
Relaying cores shall fulfil the following requirements:

<table>
<thead>
<tr>
<th>Rated current (A)</th>
<th>Rated output (VA)</th>
<th>Accuracy class</th>
</tr>
</thead>
<tbody>
<tr>
<td><500</td>
<td>10</td>
<td>5P20</td>
</tr>
<tr>
<td>≥500</td>
<td>15</td>
<td>5P20</td>
</tr>
</tbody>
</table>

Table 9.2 Relaying accuracy requirements for line terminal CT:s

Metering cores shall fulfil the following requirements:

<table>
<thead>
<tr>
<th>Rated output (VA)</th>
<th>Accuracy class</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>0.2SFs10</td>
</tr>
</tbody>
</table>

Table 9.3 Metering accuracy requirements for line terminal CT:s

Accuracy class shall range from 1 VA to 7.5 VA.

9.2.6.2 Neutral bushings
9.2.6.2.1 General
The current transformers shall be designed with two cores. Each core shall have its own secondary winding which shall be electrically completely separated from the other winding.
9.2.6.2.2. **Accuracy classes**
The cores shall fulfil the following requirements:

<table>
<thead>
<tr>
<th>Rated output (VA)</th>
<th>Accuracy class</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>5P20</td>
</tr>
</tbody>
</table>

Table 9.4 Relaying accuracy requirements for neutral terminal CT:s

9.2.6.3. **Accuracy limit factor and instrument security factor**
As a common designation to the accuracy limit factor (ALF) and the instrument security factor (Fs) the concept "overcurrent number (n)" will be used in these guidelines.

9.2.6.4. **Secondary winding resistance for relay cores**
The secondary winding resistance, at 75 °C winding temperature, must not exceed the values in Table 9.5 below.

<table>
<thead>
<tr>
<th>Ir (A)</th>
<th>≤500</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rct (Ω)</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 9.5 Maximal secondary winding resistance for relay cores

9.2.6.5. **Test conductor**
The cores shall be provided with a common test conductor (~35 mm²), by means of which current transformer testing can be carried out without magnetizing and loading of the reactor.

9.2.6.6. **Superposed magnetization**
Superposed magnetization may not be used, but turns correction without any significant superposed magnetizing effects can be accepted.

9.3 **Design**

9.3.1 **General**
The current transformers shall fulfil the requirements of the SS-EN 61869-2.

9.3.2 **Test terminals**
One end of the test conductor shall be connected to an additional terminal clamp, marked M, in the terminal box on the reactor top and the other end to the reactor tank.

9.3.3 **Secondary terminals**
Earthing of the secondary terminals (S2) shall be made at the CT-earth in the common connection cubicle, illustrated in Figure 13.1.
10 POWER AND CONTROL CABLES

Permanently laid cables shall be of screened type and possibly wire armoured cable.

To prevent excessive heating the cables must not come into contact with the reactor cover and they shall be laid in such a way that they do not become an obstacle for water drainage.

Outer cables must not be located inside pipes.

Cables on the cover and other horizontally laid cables shall be provided with a threading protection, however, this is not required when using steel wire armouring. Clips and cable straps shall be of stainless steel.

Cable sheath and possible protective earthing conductor shall be earthed in both ends of the cable.

The cable bending radius of any cable must not be below ten times its own diameter.

Power cables must have black insulation and control cables, inside cubicles, must have grey insulation.

Cable insulation must not contain halogen.

All cables and cable cores shall be provided with individual markings at both ends for the identification in the circuit diagram. The cables markings outside boxes and cubicles shall be of stainless steel.

Cable glands must be of metallic type.

11 REACTOR TANK

11.1 General
Welders must be qualified in accordance with applicable ISO standards. Welding shall be performed in accordance with applicable ISO standards. Preparation grade P3 shall apply. The tank bottom shall be self-supported, implying a possibility to locate the tank on beams with variable width and internal distance. Bell type tanks are generally not permitted.

11.2 Vacuum safety
The reactor tank must withstand a full internal vacuum. A vacuum proof tank shall have a marking indicating this.
11.3 Cover
The cover must be welded to the tank. The edge of the cover should be equipped with a slip protection, for separate ladders. On the cover there should be a necessary number of fasten eyelets, located on the cover or on each bushing turret. Tank and cover shall be designed for opening and sealing.

11.4 Hand holes
Hand holes shall be provided to facilitate the exchange of any bushing without dismantling of the cover. If a bushing exchange not is facilitated by means of hand holes, these can be excluded, however, only after written approval.

11.5 Designation plates
In the middle, approximately at ¾ height, of each long side of the tank, it shall be possible to assemble designation plates (height 270 mm, width 270 mm) by means of screws.

11.6 Valves
11.6.1 General
Butterfly valves and ball valves are preferred

11.6.2 Sampling valves
Three oil sampling valves shall be provided:

- One for sampling at cover level
- One for sampling at half the tank height
- One for sampling at the tank bottom

All valves shall be located at the tank bottom level. For the valves A and B a pipe connection from the sampling level shall be furnished. The valve dimension shall be Connection No. 20 with an internal thread R 3/4”.

11.6.3 Valves for extra heat exchanger
If specified, reactors 100 MVA and above shall be provided with two extra valves, Connection No. 100 or 200, intended for the connection of heat exchangers for heat recovery.

The heat exchanger system will normally be designed and assembled by the Client, but the external oil circuit design and the selection of material will be handed over to the manufacturer for approval.

At site the external oil circuit shall be approved by the manufacturer. The reactor guarantee shall be valid without any limitations due to the external heat exchanger system.

11.7 Pressure relief valve
The reactor tank may be equipped with a pressure relief valve. Location and design to be proposed by the supplier. The device shall be equipped with enclosure and necessary pipe arrangement, to lead any oil down to the reactor oil pit.
11.8 Surge arresters

An external bracket on the tank may be specified to facilitate installation of surge arresters close to the reactor. The delivery may include:

- Attachments
- Attachments and bracket (including cabling)
- Attachments, bracket and surge arresters (including cabling)

The surge arresters shall fulfil requirements stated in TR01-12E and shall be earthed on the tank by means of black insulated cables (minimum 50 mm² Cu) with low wave impedance, mounted on cable ladders or equivalent. The earthing cables must not be assembled together with other cables. The arresters shall be mounted on insulated base and it shall be possible to use surge counters and perform measuring of leakage current from each arrester at service level with the unit energized. All cables shall be connected to a common busbar, welded to the tank and provided with five holes, three holes for the surge arrester cables and two holes for connection to ground. On the bracket, it shall be possible to assemble designation plates for each surge arrester (height 80 mm, width 200 mm) by means of screws.

In case attachments and bracket will be chosen, the following dimensions can be used, if not otherwise is specified:

- $U_m = 170$ kV. $\phi_{plate} \approx 320$ mm. Holes might be drilled at a later stage.
- $U_m > 170$ kV. To be designed by the supplier.

11.9 Gaskets and seals

Any person who is responsible for the design, manufacture and installation/assembly, respectively, of items concerning sealing solutions for reactors shall possess necessary competence within seals and sealing technology. Seals and gaskets must be resistant to reactor oil. Regardless of the type of sealing solution this must be recorded and documented in the technical file and reference made to these guidelines.

The sealing must be vacuum proof to a pressure of 20 Pa (0.2 mbar) and oil tight to a pressure of 0.2 MPa. Furthermore: For reactors the maximum long term working temperature is assumed to be $+70$ °C. For the remaining 1% of the service life $+80$ to $+90$ °C can be considered. Other temperature ranges might be specified in single cases. Required service life for sealing devices is 60 years.

Suitable Sealing devices are mainly divided into Gaskets and Seals.

Gaskets: Detailed information regarding gasket type and dimension, housing and material selection is found in international standards e.g. SS-EN 1092-1, SS-EN 12560 part 1 and SS-EN 1514 Part-1. The gaskets must not contain asbestos. It is strongly recommended that selection of the type of gasket and suitable material is made in close cooperation with the gasket manufacturer. Gaskets should be changed into new ones each time a flange is opened.

Seals: Detailed descriptions, including standardized sizes and groove design and quality acceptance criteria is given in national and international standards, preferably: ISO 3601-1, ISO 3601-2, ISO 3601-3. The largest standardized O-ring cross section size should be used whenever possible to provide for best function and service life. It is important that material selection is made in close cooperation with the O-ring manufacturer. O-rings below lid level should not be re-used.
O-rings shall be used in general, but a rectangular cross section shape may be accepted. In some special application it might not be possible. If so it shall be declared and agreed between supplier and client.

Solid silicon seals are generally not permitted. To secure functionality at low service temperatures, i.e. none energized reactor they may, for deliveries in north Sweden, be chosen in agreement with the client.

Flat gaskets solid silicon rubber is never permitted.

Due to the high complexity corporation with supplier with high competence is requested. For example: Trelleborg, James walker, Parker and Eriks.

At beginning of project (Design review stage) the supplier shall present a complete solution for the sealing system.

11.10 Erection, Lifting devices, Transport

On the reactor tank there shall be a durable marking of the centre of gravity during transport.

Reactors shall be designed for dragging and will normally be placed on oak beams. Erection of reactors can be made by means of supports. For moving on rails, wheels may be used and shall, if specified, be included in the supply. If wheels are specified, wheel holders shall be included in the supply.

If anti-vibration plates are specified, these must be dimensioned with respect to the weight and pressure.

Wheel holders or bogies shall be designed for longitudinal and lateral movement. As to track gauges, refer to Clause 11.12 Track gauges.

The reactor tank shall be provided with clearly marked attaching plates for jacks minimum 300 mm above the rail or the erection plane.

When placed on supports in addition to the jacking plates there shall be sufficient number of jacking positions on the tank bottom. These shall be so located that the wheels, wheel holders or bogies do not interfere with the handling of jacks.

Reactors having a transport mass 80 tons and above shall be possible to transport by wagons with home location in Sweden and fulfilling Swedish railway transport profiles, hanging on brackets between the beams. If possible the choice of two different transport wagons is preferable.

Transport profiles, weight limits and the procedure to get transports permits, are described in the Network Statement with amendments, which will be updated and published at the website of the Swedish Transport Administration.

For reactors with maximal transport dimensions (L×B×H) 10000×3400×4700 mm and maximal transport weight 240 ton, most railways can be used. For larger reactors, a more accurate investigation must be performed.

If applicable, transport brackets shall be provided by the manufacturer.

Reactors must not be transported hanging in yokes (loops) between the transport wagon side members.
For the transport two independent impact recorders shall be provided. There shall be one external, tank mounted, and one internal, active-part mounted, impact-recorder. The external is used to indicate if a high impact has occurred and if further check of the internal impact-recorder is necessary. For reactors 80 MVA and below, or if the reactor is transported oil filled, only one recorder outside the tank is required.

The minimum availability for registration must be at least 6 months.

The manufacturer shall before the start of the transport state the maximum allowed stresses.

The setting of the detection limits shall be agreed upon between the manufacturer and the client.

The operation of the impact recorders shall regularly be checked during the transport.

11.11 Gas and oil actuated relay inspection
Reactors shall be provided with a platform for inspection of the gas and oil actuated relay. The platform and the ladder shall fulfil the requirements of the Swedish Work Environment Authority, as well as ISO 14122-3 and ISO 14122-4. The location of the gas and oil actuated relay is dealt with in Clause 6.1. It shall be possible to attach the ladder to three of the platform sides. A separate ladder (non-metallic) with slip protection may be accepted, but only after written agreement.

The platform shall be constructed with a floor of lattice type and have raised borders (slip protection). Furthermore bars or chains shall be provided at the ladder opening.

Permanently assembled ladder shall be provided with protections against falling down in accordance with AFS 2000:42, 61§.

11.12 Track gauges

11.12.1 General
The track gauges shall also apply in case of reactor erection on steel or concrete beams or oak planks.

11.12.2 Longitudinal movement
Track gauge 1435 mm

![Figure 11.1 Longitudinal track gauge](image)
11.12.3 Lateral movement

Alternative A – track gauge 1435 mm

Alternative B – Track gauge 2940 mm, possibly a centrally located support wheels

Alternative C – Track gauge 4000 mm with a centrally located support wheel

\(^1\) For 130 kV reactors the track gauge 1435 mm shall be chosen if possible.
Alternative D – Track gauge 2×1435 or 2×2500 mm with 4000 or 5000 mm centre distance between track pairs.

11.13 Sound proofing
External sound panels, as well as double walled tanks, are normally not allowed and may be applied only after written approval.

12 CORROSION PROTECTION AND SURFACE TREATMENT

12.1 Reactor tank, OLTC tank
Type of paints in the system for corrosion protection must be of a type that keeps down the airborne emissions of volatile organic compounds (VOC) to a minimum. This can preferably be obtained by use of water borne paints or high solid paints if not the painting facility is suitable for water borne paints.

The external painting system shall comply with the requirements based on SS-EN ISO 12944 Corrosivity category C4 H (high atmospheric corrosivity with a protection durability of more than 15 years).

Accelerated laboratory test according to SS-EN ISO 12944-6 shall only be used as guidance for qualification of the paint system but to qualify the paint system it must be tested through field test. The outdoor test site for qualification of the paint system must comply with SS-EN ISO 8565. The field test requirement and assessment must be according with section 8.726 in BSK 07. A pre-qualification test can be made according to SS-ISO 11474 (SCAB-test) with requirement and assessment according to section 8.726 in BSK 07.

12.2 Connection boxes, cubicles and OLTC motor drive
The external painting system shall comply with the requirements based on SS-EN ISO 12944 corrosivity category C4 H (high durability). Same colour as for the tank shall apply.
12.3 Screws etc.
All screws, washers and nuts shall be of acid proof steel (steel grade A4) in accordance with SS 14 2324 and SS-EN 10088-3 or of another from the corrosion point of view equivalent material.
Screws and nuts shall be waxed in order to prevent seizing. Type of washers shall be selected in order to prevent paint cracking.

12.4 Radiators
The radiators shall be hot dip galvanized in accordance with SS-EN ISO 1461. The coating thickness shall be at least 70 μm. Hot dip galvanized surfaces must not be painted. However, if a corrosivity category higher than C4 H is required, painting may be accepted.

12.5 Coolers, fans and pumps
The external painting system shall comply with the requirements based on SS-EN ISO 12944 corrosivity category C4 H. Same colour as for the tank shall apply.
For cooling type ..WF the coolers must not have copper in direct contact with the reactor oil.
13 EARTHING

13.1 Principal earthing diagram

13.2 System earthing

13.2.1 Neutral point earthing

For direct earthing of windings the reactor shall, if not otherwise stated, be provided with a neutral bus assembled on the tank. The end of the bus connected to the neutral point (top) shall be disconnect able and the other end (bottom) shall terminate at the same level as other tank earthing points. To avoid tank damages due to fault currents the bus shall be insulated from the tank.

For the connection of earthing cables by cable lugs the neutral bus lower end shall normally be provided with two holes Φ 14 mm with a vertical c/c 40 mm distance. If specified, four holes shall be provided.
13.3 Protective earthing

13.3.1 Reactor tank
For the protective earthing of the reactor tank two earthing terminals diagonally located close to the tank bottom shall be provided. The earthing cable comprises a few-wire copper conductor, 95 mm² for highest voltage for equipment Um = 145 kV and 185 or 240 mm² for higher voltages. The terminals shall be flat with four holes, φ 14 mm, having a vertical centre distance of 40 mm and a horizontal one of 50 mm. The contact surface shall be protected against corrosion in a way that a good electrical contact will be obtained after assembly.

13.3.2 Connection cubicles and control cabinet
Connection cubicles and cabinets shall have a protective earthing to the reactor tank through a visible green/yellow earthing connection.

Current transformers shall in their connection cubicle be earthed to a common earthing terminal. This terminal shall also be accessible on the outside of the cubicle and be designed for the connection of an earthing cable of at least 25 mm². A plate “Ansluts till marklinenät” shall be located in the vicinity of the accessing point. The current transformers shall be earthed by a cable with grey insulation.

13.3.3 Separately erected cooling equipment
Each cooler support shall be provided with one earthing terminal identical with the ones for the reactor tank.

13.3.4 Other equipment
All metallic pieces not welded to the tank shall be earthed to the tank through a visible green/yellow earthing links.

13.4 Core earthing
The core and core clamping earthing shall be individually earthed in an external earthing box.

14 OIL AND OIL SYSTEM

14.1 Oil quality requirements
The oil must be of naphthenic base and be solvent refined and/or severely hydro treated

The oil must fulfil the requirements for inhibited oil (group I in accordance with SS EN 60296), and contain at least 0.3% (kg/kg) of an oxidation inhibitor of type di tert butyl-parakreosol (DBPC)

The lowest cold start energising temperature (LCSET) shall be −40°C

The oil must not be added any pour point depressants
The oil must not contain any Dibenzyl Disulfide (DBDS).

The oil must not be added any gas absorption additives.

The detection limit to verify the PCB content must be 0 ppm. If an oil sample withdrawn at the delivery contains 2 ppm or more the oil delivery will not be accepted. The total aromatic content must not be higher than 10% (v/v).

It should be noted that the kinematic viscosity at -30°C must not be higher than 800 mm²/s (Deviation from SS-EN 60296).

The manufacturer shall present an oil specification for approval. In the specification the type of base, country of origin and refining place shall be clearly stated.

In connection with the factory acceptance tests the manufacturer shall, if specified, withdraw two oil samples from the reactors for among others PCB check (even if the oil will not be shipped with the reactor). Sample containers will be provided by the client.

The following documentation shall accompany each delivery:

A test certificate indicating country of origin and refining location
B HPLC "finger print" (HPLC = High Performance Liquid Chromatography)
C product specification with data according to SS-EN 60296
D verification proof of a non-corrosive oil with respect to sulphur
E certificate verifying that the oil used at FAT is compatible with the delivered oil
F information on:
 • fire fighting precautions
 • decomposition products
 • health hazard
 • first aid
 • personal protection
 • environmental hazard
 • destruction
 • storage and handling
 • transport classification

Approved oils are:

• NYNÄS NYTRO 10XN
• SHELL DIALA S4 ZX-I

Other oils can be accepted, however only after written approval.

14.2 Oil system

The main conservator shall be provided with a rubber bag or membrane to prevent humidity to and air access.

On-load tap-changer diverter switches operating in oil shall have an oil compartment completely separated from the reactor oil and provided with a separate expansion space.

After oil filling the leakage of air into the reactor must not exceed 0.3% (by volume). This will normally be fulfilled by using a rubber sack having a diffusion rate of less than 50 l air/m² rubber and year at 20°C. The aging properties of the rubber material shall be presented.
14.3 Conservator
At -40°C ambient temperature, off circuited reactor and at steady state condition the oil level must not drop to such a level that the oil level indicator no longer will show any level reading. Furthermore the oil shall at steady state not overflow at +40°C ambient temperature and fully loaded reactor.

Separately mounted conservators shall have expansion couplings in its connection pipes.

The opening for oil filling shall be provided with a case with an internal thread.

There shall be a shut off valve between the gas operated relay and the conservator.

The conservator must be welded. Necessary hand holes for exchange of rubber bag, inspection and cleaning shall be provided.

14.4 Dehydrating breather
The reactor shall be provided with a dehydrating breather with a hydraulic guard.

The air dryer shall be located at service level and the drying substance must be visible along the complete length of the dryer.

The air dryer shall be provided with a label showing the colour change when the drying substance is becoming humid.

The size of the dehydrating breather must be designed for an exchange interval of the drying substance exceeding four years.

If specified, the dehydrating breather shall be of maintenance-free type.

14.5 Oil sampling
Refer to Clause 11.6.2

14.6 On-line monitoring
Refer to Clause 6.5

15 MARKING

15.1 Plates
All plates shall be in Swedish. English languish can be accepted for plates belonging to accessories from sub suppliers. Outdoor plates shall be weather resistant.

15.1.1 Rating plate
The rating plate shall contain the information according to IEC 60076-6, Clause 7.7 and also:
- IEC/EN/SS-EN-standard
- highest voltage for equipment
- maximum continuous operating voltage

15.1.2 Diagram plate
A diagram plate is required for all reactors.

15.1.3 Accessory plate
A plate shall be provided (may be combined with the oil circuit diagram plate) showing
the following accessory information:
- location
- size or type designation
- purpose

The following accessories shall be included:
- bushings
- gauges
- valves
- venting valves
- hatches for reconnection
- thermometers
- level indicators
- connection cubicles
- tank earthing terminals
- jacking positions

15.1.4 Oil circuit diagram
If specified an oil circuit diagram shall be provided (may be combined with the
accessory plate).

15.1.5 Bushing current transformer plate and marking
15.1.5.1 General
The secondary terminals shall be marked according to SS-EN 61869-2 (The alternative
1S1, 1S2 etc. shall be used).

The secondary terminal marking shall correspond to a fictitious primary terminal
marking P1 - P2, where P2 is closest to the reactor. The test conductor terminal
marking, M, shall correspond to P1.

15.1.5.2 Rating plate
Beside the reactor rating plate, or as a part of it, or inside the connection cubicle there
shall be a permanently fixed, distinct rating plate which shall contain the data in
accordance with SS-EN 61869-2. Note here that the current transformer serial No. as
well as calculated (not rated) values of the winding resistance (R) and the over current
factor (n) shall be specified.

The rating plate shall in other respects fulfill the requirements in the main document.

15.1.5.3 Diagram plate
Beside the reactor rating plate, or as a part of it, or inside the connection cubicle there
shall be a permanently fixed, distinct diagram plate showing the current transformer
connection and terminal marking. The separate main data for the different cores shall
be clear from the plate.
The diagram plate shall in other respects fulfil the requirements in the main document.

15.1.6 Other plates
All cubicles shall have plates showing the purpose.

Each individual accessory, outside cubicles, shall be provided with a plate showing the purpose as well as clear identification. Inside cubicles only clear identification is required.

Pumps shall be provided with plates such as P1, P2 ...

Fans shall be provided with plates such as F1, F2 ...

Labels showing the direction of rotation shall also be provided.

A plate with a diagram showing the oil level or oil volume as a function of top oil temperature and loading conditions (0, 100 %) in steady state condition shall be provided. Even the signalling levels shall be indicated. From readings from the top oil thermometer and the oil level indicator it shall be possible to easily judge if the oil level is normal.

15.2 Terminal markings
There shall be a sustainable marking of each terminal by means of symbols in relief. It shall be possible to identify each terminal marking from service level. The terminal markings are preferable located at the bushing turrets. Terminal markings to be used are agreed between the supplier and client in every single case.

16 INFORMATION IN THE BID

16.1 General
In addition to IEC 60076-1, Annex A the manufacturer shall in his bid submit all the information asked for as specified below, in the inquiry or elsewhere in this document.

In case of missing information or parts of it the bid will not be taken into consideration.

Catalogues, pamphlets, summaries etc. shall be provided with clear reference to the tendered equipment.

16.2 Bid content
In addition to required information, stated in data compilation, the following documents shall be submitted:

- Outline drawing with
 - outer dimensions guaranteed with a tolerance of +200 mm (specified maximum dimensions not to be exceeded)
 - bushing locations and air clearances
 - outer dimensions and tank dimensions
If applicable, Swedish railway coach transport drawing proofing that the reactor will not exceed the Swedish railway transport sections.

- Data compilation as per chapter 23 properly completed. The data compilation shall be updated if design changes are agreed, for instance during tender negotiations or a design review.
- Connection diagram
- Test connection diagram for impulse and power frequency tests
- Oil specification in accordance with Clause 14.1
- Spare parts list including unit prices
- List of all deviations from the inquiry, this document and the standards and specifications referred to
- The deviations shall be accompanied with clear references
- If specified a time schedule for drawings, diagrams, control and inspection plans for the manufacturing, tests and assembly
- Type test certificates on units identical in rating and construction.
- List including all tests which will be performed at the Factory Acceptance Test (FAT).

17 QUALITY ASSURANCE

17.1 Quality and Eco Management Systems
The manufacturer shall in his tender describe his Quality Management System (QMS) and Eco Management System (EMS) to ensure that the reactors in all respects such as design, supply of materials, choice of material, manufacturing, testing, service, maintenance, documentation and environmental impact are fulfilling the requirements set up in the contract documents, standards, specifications and regulations.

The quality management shall be based on and in relevant parts fulfil the requirements in SS-EN ISO 9001 and SS-EN ISO 14001.

The manufacturer is responsible to all his sub suppliers establishing and executing quality management systems on their own.

17.2 Quality manuals
Complete quality manuals describing the execution of all the elements of the quality systems shall be available with the manufacturer as a reference for the client or his representative. The manual shall be written in English.

17.3 Quality inspection. Inspection plans
The manufacturer shall for each reactor establish a main inspection and test plan (ITP) containing a summary of all the inspections and tests which shall be performed during the manufacturing, factory acceptance testing, final assembly and commissioning.

It shall be clear from the inspection plan where inspection activities shall be performed, the parties to be present and inspection plans in force and distribution of testing and inspection documents.
The main inspection and test plan shall be approved by the client before the beginning of the manufacturing.

The client or his representative shall have the right to take part in any inspection or test and shall also be informed of the result as specified in the inspection documents.

The client or his representative shall also at any moment have the right to, without any advance notice, make a follow-up of an arbitrary inspection, manufacturing step or test at the manufacturer’s or the sub supplier’s plant and then also be informed of the result.

Inspections and tests performed in the presence of the client or his representative will not imply any limitation of the manufacturer’s responsibility.

18 DESIGN REVIEW

A design review includes an electrical and a mechanical part. A design review shall be conducted in accordance with the guidelines in Cigré TB 209 and TB 529.

The data compilation sheet shall be reviewed and, if necessary, updated during the design review.

The objective of the design review is

- to ensure that there is a clear and mutual understanding of the technical requirements
- to verify the system and project requirements and to indicate areas where special attention may be required
- to verify that the design complies with the technical requirements
- to identify any prototype features and to evaluate their reliability and risks

The review is preferably held after completion of the electrical design but before start of any manufacturing activities.

The review shall be held at the manufacturer’s plant and it shall be considered as confidential. Its purpose is not to give possibilities to make changes in the design. However, should it be evident that the manufacturer is not fulfilling specified requirements necessary changes in the design may be required.

Special attention shall be paid concerning the thermal and mechanical design.
19 FACTORY ACCEPTANCE TESTS.
FINAL INSPECTION.

19.1 General
The factory acceptance tests shall be witnessed by the client or his representative and a notice shall be submitted at least two weeks before commencement of the tests.

At the acceptance tests the reactor shall be assembled as for service, i.e. complete with conservator, coolers, supervisory equipment etc. This means that even oil-SF6 bushings must not be replaced by corresponding oil-air bushings. Deviations from this requirement may be made, however, only after written approval from the client.

Type tests on a representative reactor may be referred to if the type test report is not older than five years and is submitted together with the bid. If this is not the case type tests shall be made. The meaning of "representative" is explained further in the NOTE to SS-EN 60076-1, Cl 3.11. These requirements apply also to on-load tap-changers, bushings and built in current transformers.

19.2 Standards. Testing specifications.
Factory acceptance tests shall be performed in accordance with IEC 60076 if not specified otherwise below.

Bushings shall be tested in accordance with IEC if not specified otherwise below.

Current transformers shall be tested in accordance with SS-EN 61869-2 if not specified otherwise below.

19.3 Testing environment
During site tests ambient temperatures down to 0°C are accepted from practical reasons.

19.4 Instrumentation
All measuring equipment shall be of at least class 0.2. Analogue watt meters giving a full deflection for a power factor of 0.1 may be of class 0.5. The equipment shall be calibrated at least once a year at a measurement laboratory. The latest calibration curves shall be available at the test location. The equipment shall in addition be provided with visible markings showing the last calibration date.

19.5 Tolerances
In the bid, order and contract it may be stated that the guaranteed losses shall apply without tolerances. This refers only to the calculation of bonus and penalty.
19.6 Test results and test reports

19.6.1 General
A preliminary test report including copies of draft test reports shall be handed over to the client’s inspector immediately after completion of each test. The inspector shall have the right to receive a draft test result copy as soon as a part test is finished.

Routine test reports for bushings and current transformers shall be presented to the inspector without request. Type test reports for the other equipment shall be available at the test location.

The result from all routine, type and special tests shall be compiled in a document together with the test program as well as a possible non-conformance report. Note that if type tests have been performed on another reactor or its accessories the corresponding type test reports shall be included.

At the latest three weeks after the factory acceptance tests the test report shall be available at the client’s office.

19.6.2 Bushing current transformers
Type test certificates referred to shall un-requested be sent to the client without any delay.

Type test certificates more than five years old cannot be accepted without special agreement.

The routine test certificates shall include, in addition to the routine test results, the following information:

- The date and reference No. of the type test certificate
- Current transformer data
- The parameters n and Rct (from the type test) for each core for the determination of the over current factor at different burdens.
- The client’s reference number
- The current transformer serial No.

19.7 Routine tests

19.7.1 Measurement of loss (IEC 60076-6, Cl 7.8.6)
As reference for future field tests three single phase load current measurements shall be performed feeding each phase with 230 V.

19.7.2 Dielectric tests

19.7.2.1. Induced AC withstand voltage test (IEC 60076-6, Cl 7.8.10.3)
Reactors with the high voltage side highest voltage for equipment Um=145–170 kV shall be subjected to a three phase induced voltage test with 275 kV between phases.

19.7.2.2. Induced AC withstand voltage test and partial discharge measurement (IEC 60076-6, Cl 7.8.10.3)
The test shall always be carried out as a three phase test.
The following PD guarantee levels shall apply:

- 250 pC when $U=1.58 \times \frac{U_r}{\sqrt{3}}$ (For PD-levels >100 pC an explanation must be presented.)
- 100 pC when $U=1.2 \times \frac{U_r}{\sqrt{3}}$

Measured partial discharge levels and the inception voltage, U_i, as well as the extinction voltage, U_e, shall be recorded and presented in the final test report. Neither of U_i or U_e is allowed to fall below $\frac{U_r}{\sqrt{3}}$.

The normal partial discharge detection method shall be of type broad band measurement, but narrow band measurement may be permitted, however, only after written approval from the client.

19.7.2.3. Lightning impulse test (IEC 60076-6, Cl 7.8.10.4)
For reactors with a high-voltage winding having $U_m \geq 145$ kV, lightning impulse test is a routine test. (IEC 60076-3, Cl 7.2.1). Subsequently, lightning impulse tests shall be performed as a routine test on all phase terminals as well as the neutral terminal.

19.7.2.4. Chopped wave lightning impulse test
Chopped wave lightning impulse tests are routine tests for all windings having $U_m > 170$ kV (SS-EN 60076-3, Cl 7.2.1). The chopped wave lightning impulse test is combined with the full lightning impulse test in a single sequence.

<table>
<thead>
<tr>
<th>Category of winding</th>
<th>Highest voltage for equipment U_m kV</th>
<th>Lightning impulse test kV</th>
<th>Chopped wave lightning impulse test kV</th>
<th>Switching impulse test kV</th>
<th>Induced AC voltage tests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IVPD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1-phase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IVPD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IVW</td>
</tr>
<tr>
<td>Non-uniform insulation</td>
<td>145</td>
<td>550</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td>170</td>
<td>550</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>245</td>
<td>850</td>
<td>1.1×850</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>1300</td>
<td>1.1×1300</td>
<td>1050</td>
<td></td>
</tr>
</tbody>
</table>

| Clarification: $U_1 = $ Enhancement voltage, $U_2 = $ One hour PD-measurement voltage |

Table 19.1 Summary of dielectric tests with test voltages for different categories of windings and Um-levels

19.7.3 Sound level measurement (IEC 60076-6, Cl 7.8.12)
To be performed as a routine test, at rated voltage, on all reactors.

For variable shunt reactors, sound level measurement shall be performed at the tapping giving the highest core flux density.

A frequency analysis with a step factor of 1.25 (one third octave band) shall always be made.

For each location of microphones the measured sound power as well as the frequency analysis shall be reported in the test certificate.

A measurement of the sound intensity shall be performed. The sound power shall then be calculated from the sound intensity in accordance with IEC 60076-10.

19.7.4 Measurement of vibration (IEC 60076-1, Cl 7.8.13)
To be performed as a routine test on all reactors.
19.7.5 FRA
Reactors shall be subjected to a frequency response analysis (FRA) fingerprint measurement as a routine test. The result shall be described in the test report together with a careful description of the performance of the test, making it possible to repeat the measurement at site.

19.7.6 Pressure testing
The reactor tank and the coolers shall be subjected to a 12 h over-pressure test on the liquid surface corresponding to an oil column equal to the internal tank height.

19.7.7 Bushing current transformers
A power frequency test shall be carried out on the test conductor at 3 kVrms, the windings and other current transformer parts being earthed.

19.7.8 Core insulation resistance measurement
The following insulation resistances shall be measured:

- Core to tank
- Core to yoke clamps
- Yoke clamps to tank

19.7.9 Winding insulation resistance measurement
The following insulation resistance and polarisation index measurements shall be performed:

- between all windings connected together and ground (tank + core)
- between each winding and the other windings connected together and grounded

19.7.10 Tests and inspections on accessories
Inspections shall be carried out to assure that the reactor is equipped with all the accessories and equipment stipulated in contract documents and these guidelines and that they operate as intended.

Each complete control equipment shall be voltage tested with 2 kV 50 Hz for 1 min. Motors for the on-load tap-changer motor drive shall be subjected to a test with at least 1.5 kV 50 Hz for 1 min.

The insulation resistance between electrically separated circuits or between conductor and ground must exceed 2 MΩ measured with 500 V DC.

19.7.11 Painting inspection
Examination of the corrosive protection and the surface treatment requirements in Clause 12 shall be performed. On request, the supplier shall present a painting type test report. A painting inspection certificate shall accompany the delivery. This shall be based on logging during the paint work and must not be drawn up afterwards.

19.8 Type tests

19.8.1 Determination of linearity of reactance (IEC 60076-6, Cl 7.8.5.3)
Determination of linearity shall be performed as a type test
19.8.2 Measurement of zero sequence reactance on three-phase reactors (IEC 60076-6, Cl 7.8.8)
Measurement of zero sequence reactance on three-phase reactors shall be performed as a type test. At all tests, neutral current, phase to phase voltage and active power consumption shall be measured.

19.8.3 Measurement of mutual reactance on three-phase reactors (IEC 60076-6, Cl 7.8.9)
Measurement of mutual reactance on three-phase reactors shall be performed as a type test

19.8.4 Temperature rise test (IEC 60076-6, Cl 7.8.14)
Temperature rise test shall be performed as a three phase test. In the test certificate the voltage measured during the test shall be stated.

The applied voltage levels shall be based upon the highest value of Um and Maximum continuous operating voltage (Deviation from SS-EN 60076).

When determining oil temperature rise both method a and b according to SS-EN 60076-2 may be used.

Temperature of outgoing oil to radiators/coolers shall be measured to obtain the top oil temperature. Recorded and calculated temperatures and temperature rises, including hot spot temperature rises, shall be presented with one decimal place in the test report. The hot spot temperature rises shall always be calculated by means of the true hot spot factors which are equal to \(H_{\text{test}} \), determined at the design review.

Complete curves for oil and winding temperature determination shall be presented in the test report. All measuring points shall be included and it shall also be clear which measurements are deemed to be erroneous and consequently deleted. The extrapolation method shall also be stated.

When switching off from rated current to determine the warm resistance the measurement must have been started within one minute and the first reliable reading must have been obtained within two minutes from current interruption. The resistance measurement must proceed at least 20 min for cooling type OF/OD.. and 10 minutes for cooling type ON...

In case of type OF/OD.. cooling pumps and fans shall be running after the test power disconnection.

Normal gas production is specified in SS-EN 60076-2, edition 3.0-2011. The change of gas concentrations during the test shall not exceed the following values:

\[
\begin{align*}
\text{H}_2 & \leq 18 \text{ ppm/24 h} \quad (\leq 25 \text{ ppm/24 h for cooling type ON..}) \\
\Sigma \text{CH}_4 + \text{C}_2\text{H}_4 + \text{C}_2\text{H}_6 & \leq 12 \text{ ppm/24 h} \\
\text{C}_2\text{H}_2 & \leq 0.1 \text{ ppm/24 h} \\
\text{CO} & \leq 40 \text{ ppm/24 h} \\
\text{CO}_2 & \leq 200 \text{ ppm/24 h}
\end{align*}
\]

For determination of the change of gas concentrations, it is preferred that the first and last oil sample during the temperature rise test is used.
19.8.5 Loss of cooling temperature rise test (Addition to IEC 60076-6, Cl 7.8.14)

To verify the loadability at a trip of the cooling equipment (not applicable for cooling type ONAN) as requested in Clause 4.5.1 the normal temperature rise test shall be followed by an additional temperature rise test for one hour with the coolers not in operation. Before switching off the coolers the oil temperature rise shall have reached a steady state condition. Determination of oil and winding temperatures shall be made as for the conventional temperature rise test.

19.8.6 Bushings creepage distance verification for polluted conditions

19.8.6.1. Ceramic type insulator
As an alternative to creepage distances in Table 4.3 the insulation may be verified by means of a functional test in accordance with IEC 60507, salt fog method (section three). The amount of salt shall be 40 g/l which corresponds to the polluted conditions on the Swedish west coast.

19.8.6.2. Polymeric type insulator
To provide good pollution performance, the polymeric insulator profile must comply with certain profile parameters stated in IEC/Ts 60815-3. Values for these parameters are specified below:

<table>
<thead>
<tr>
<th>Highest voltage for equipment</th>
<th>L1/D1 and L2/D2 max</th>
<th>Creepage Distance/FOD max</th>
<th>S/P min</th>
<th>C min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Um [kV]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36 - 420</td>
<td>5.0</td>
<td>4.5</td>
<td>0.75</td>
<td>40</td>
</tr>
</tbody>
</table>

Table 19.2 Requirements for polymeric insulators in a polluted environment. The geometrical parameters (expressed in mm) L1, D1, L2, D2, S, P and C are defined in IEC/Ts 60815-3.

19.8.7 Bushing current transformers

19.8.7.1. Temperature rise test
The temperature rise test shall be carried out at rated continuous thermal current.

19.8.7.2. Verification of no-load impedance instrument security factor and accuracy limit factor
A complete no-load curve shall be plotted to determine the actual over current number (n) and for verification of the no-load impedance.

The secondary winding resistance (Rct) shall be measured and corrected to 75°C.

In addition to SS-EN 61869-2 the actual instrument security factor shall be calculated as

\[n = F_s = \frac{I_{exc}}{I_{sn}} \]

In addition to SS-EN 61869-2 the actual accuracy limit factor shall be calculated as

\[n = ALF = \frac{I_{exc}}{I_{sn}} \]
19.8.8 Inspection and testing of accessories

It shall be possible to continuously operate contactor and relay coils at 110% of rated voltage without damage. On request this shall be verified by the supplier. The control equipment terminals shall be tested in accordance with SS EN 61000-4-4 Class 3.

20 SITE TESTS

20.1 Tests on a reactor ready for operation

Minimum the following site test shall be carried out before taking the reactor in operation.

20.1.1 400 kV reactors

• Oil quality test
• Dissolved gas analysis (DGA)
• Frequency dielectric spectroscopy fingerprint (FDS)
• Frequency response analysis (FRA)
• Winding insulation resistance and polarisation index measurement
• Core insulation resistance measurement
• Winding resistance measurement (if bushings has been removed during transport)
• Bushing CT ratio and no-load current characteristic check (if CT:s have been removed during transport)
• 230 V single phase load current measurement
• Operational tests on ALL accessories

20.1.2 All other reactors

• Oil quality test
• Dissolved gas analysis (DGA)
• Frequency response analysis (FRA)
• Core insulation resistance measurement
• Winding resistance measurement (if bushings has been removed during transport)
• Bushing CT ratio and no-load current characteristic check (if CT:s have been removed during transport)
• 230 V single phase load current measurement
• Operational tests on ALL accessories

20.2 Tests in service

The tests specified below shall be carried out by the supplier or the client. The executor is stated by the client in data compilation. Guarantees shall not be affected of the choice.

• Extended oil quality test after 12 and 24 months in operation
• DGA, after 1, 3, 6, 12 and 24 months in operation

20.3 Site test certificates

The result from the site tests as well as the site test program and the service certificate shall be compiled in a document to be added to the instruction manual.
21 TIME SCHEDULES

After the reactor has been ordered the manufacturer shall submit a time schedule for the following activities:

1. Documentation
2. Manufacturing and testing
3. Transport
4. Erection and commissioning

For item 1 the client and the manufacturer will jointly settle the hold points.

Items 2 - 4 will be decided by the manufacturer considering the date of commercial operation.

22 DOCUMENTATION

22.1 General
All of the documentation shall be in Swedish to the utmost possible extent. The documentation required for erection, assembly, operation and maintenance must be in Swedish. However, test reports, catalogues and pamphlets may be in English provided a written approval from the client.

22.2 Tender documents
Refer to Clause 16.2.

22.3 Documents for approval
The following documents shall be provided for approval:

<table>
<thead>
<tr>
<th>Pos</th>
<th>Date</th>
<th>Activity</th>
<th>Executed by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 month after order</td>
<td>Document A1, A2, A3 and C1 to Client for comments.</td>
<td>Supplier</td>
</tr>
<tr>
<td>2</td>
<td>Within two weeks after Pos 1</td>
<td>Comments on document A1, A2, A3 and C1 in Pos 1 to Supplier.</td>
<td>Client</td>
</tr>
<tr>
<td>3</td>
<td>After completion of designs but before start of any manufacturing activities</td>
<td>Document B1-B9, C3 to Client for comments.</td>
<td>Supplier</td>
</tr>
<tr>
<td>4</td>
<td>Within two weeks after Pos 3</td>
<td>Comments on Pos 3 to Supplier.</td>
<td>Client</td>
</tr>
<tr>
<td>5</td>
<td>Two weeks before design review, if applicable</td>
<td>Document C2, if applicable.</td>
<td>Supplier</td>
</tr>
</tbody>
</table>
Table 22.1 Documents for approval

<table>
<thead>
<tr>
<th></th>
<th>Date</th>
<th>Description</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>One month before factory acceptance test</td>
<td>Document D to Client for comments.</td>
<td>Supplier</td>
</tr>
<tr>
<td>7</td>
<td>Within two weeks after Pos 6</td>
<td>Comments on Pos 6 to Supplier.</td>
<td>Client</td>
</tr>
<tr>
<td>8</td>
<td>Three weeks before factory acceptance test</td>
<td>Document C2-C3, B1-B9 and D in two complete sets to Client.</td>
<td>Supplier</td>
</tr>
<tr>
<td>9</td>
<td>At the delivery of reactor</td>
<td>Document E to Client.</td>
<td>Supplier</td>
</tr>
<tr>
<td>10</td>
<td>Within one month after Pos 9</td>
<td>Complete sets of the final documentation (including documents C2 (if applicable), C3 and C4) to Client.</td>
<td>Supplier</td>
</tr>
</tbody>
</table>

Doc. | **Drawings as to layout, building basis, transport and assembly:**

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Reactor outline drawings showing</td>
<td>- principal dimensions with tolerance</td>
<td>- weights with tolerance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- location of jacking positions and supports</td>
<td>- location of coolers and conservator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- location of bushings</td>
<td>- location of control cabinet</td>
</tr>
<tr>
<td>A2</td>
<td>Transport drawings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>Airflow for building ventilation system</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Doc. | **Binding drawings and diagrams:**

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Reactor outline drawings including accessories.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>Reactor circuit diagram</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>Connections, detailed specification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>Cooler circuit diagram</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>Control equipment circuit diagram including terminal table</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td>Auxiliary equipment circuit diagram</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B7</td>
<td>Oil circuit diagram</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B8</td>
<td>Dimension drawing of control cabinet with placing of apparatuses</td>
<td>Overview drawing of control cabinet.</td>
<td>List of apparatuses with complete data and descriptions.</td>
</tr>
<tr>
<td>B9</td>
<td>Rating plate drawings</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Doc. | **Quality control documents:**

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Quality control, environmental management plan, organization structure, inspection plans and time schedule for manufacturing, testing and transport.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>Design review report, if applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>Factory acceptance test program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>Test reports</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Instruction manual for assembly, maintenance and service including identification of equipment and spare parts specific to the actual order.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Shipping documents including a valid transportation permission from the Swedish authority “Trafikverket”.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Documents for approval shall be supplied in PDF format preferable at agreed common web places or by electronic mail.

When delivering the final documentation (in PDF format) one additional drawing set on USB shall be supplied.

In case of computer-produced drawings (CAD) a set of USB with format AUTOCAD shall be submitted. The AUTOCAD drawings shall comply with version 2004 and later. Each AUTOCAD drawing shall be delivered as an individual file and shall be submitted with the format dwg. Any manual or descriptions shall be submitted as format PDF.

Examination and approval of the drawings, diagrams and documentation by the client does not lead to any confinements in the supplier's responsibility.

22.4 Instruction manual

The instruction manual shall be supplied in two copies one of which shall be available at the client's office at the latest three weeks before the beginning of the factory acceptance tests. The pdf-file of the instruction manual shall be created in a similar design as the paper file itself (all documentation in one file). From the table of contents it shall by indication easily be possible to move to selected chapter. The pdf-file shall not be writing protected.

The instruction manual shall in principle be compiled as follows:

- Lead sheet with client’s and manufacturer’s reference No.
- Conclusive data sheet (Compilation of Technical Data)
- Dimension / Outline drawing with equipment / accessory list
- Circuit diagram with equipment / apparatus list
- Control cabinet
- Current transformers
- Bushings
- Painting inspection certificate
- Cooling equipment
- Oil circuit diagram
- Supervisory equipment and other accessories
- Transport
- Erection/Assembly
- Oil specification and information in accordance with Clause 14.1
- Gasket and sealing solution
- Operation and maintenance instructions
- Diagnostic maintenance
- Instructions for all programmable equipment’s
- Product and safety information for all included chemical products
- Other information
- Design review report (if applicable)
- Test reports (type test reports shall always include a reference to the type tested unit)
- Photographs of the active part and complete reactor

In each section there shall be a summary of included drawings (with information of latest revision) and also the main data of included components.

A summary of all included components (list of apparatuses/equipment list) such as thermometers, on load tap changer, motor drive, pumps, fans etc. shall be provided. Type designations, ratings and a clear identification shall also be provided.
For the bushings and current transformers their location shall be stated (serial No. and phase). The same applies to single phase on-load tap-changers.

In submitted catalogues and pamphlets the actual component shall be legibly marked.

For programmable equipment (transducers, programmable instruments etc.), software, manuals, cables etc. shall be provided.
23 DATA COMPILATION FOR SHUNT REACTORS

If values and information not explicitly is stated by the client in Data compilation, the tenderer is asked to fill in values and information in accordance with TR01-11E. Several, not explicitly stated values and information, are determined by TR01-11E. Remaining values and information in Data compilation, which not are determined by TR01-11E, shall also be filled in, in order to make it possible for the client to review what the supplier intend to deliver.

Revision

<table>
<thead>
<tr>
<th>ID</th>
<th>Date</th>
<th>Description</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 GENERAL

<table>
<thead>
<tr>
<th>Inquiry / Order</th>
<th>Pos</th>
<th>Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tenderer / Manufacturer</td>
<td>Reference (Supplier)</td>
<td>Type designation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factories (Main assembly-Core-Windings-Tank)</th>
<th>Version TR1-11E</th>
</tr>
</thead>
</table>

2 NETWORK DATA

<table>
<thead>
<tr>
<th>Network</th>
<th>kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short circuit power from resp. network</td>
<td>MVA</td>
</tr>
<tr>
<td>Reference voltage</td>
<td>kV</td>
</tr>
<tr>
<td>Relation X0/X+</td>
<td>-</td>
</tr>
</tbody>
</table>

3 RATINGS

<table>
<thead>
<tr>
<th>Rated voltage</th>
<th>kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum continuous operating voltage</td>
<td>kV</td>
</tr>
<tr>
<td>Maximum switch on voltage</td>
<td>kV</td>
</tr>
<tr>
<td>Rated power</td>
<td>Mvar</td>
</tr>
<tr>
<td>Connection mode</td>
<td>-</td>
</tr>
</tbody>
</table>

4 INSULATION LEVELS

<table>
<thead>
<tr>
<th>Highest voltage for equipment, Um</th>
<th>Line</th>
<th>Neutral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated withstand voltages</td>
<td>kV</td>
<td></td>
</tr>
<tr>
<td>Lightning impulse</td>
<td>kV</td>
<td></td>
</tr>
<tr>
<td>Switching impulse</td>
<td>kV</td>
<td></td>
</tr>
<tr>
<td>Power frequency</td>
<td>kV</td>
<td></td>
</tr>
</tbody>
</table>
Air clearances

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>phase-phase</td>
<td>mm</td>
</tr>
<tr>
<td>phase-ground</td>
<td>mm</td>
</tr>
</tbody>
</table>

LOSS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference voltage</td>
<td>kV</td>
</tr>
<tr>
<td>Load loss</td>
<td>kW</td>
</tr>
</tbody>
</table>

CORE DESIGN

- core type
- windings on all limbs
- limbs without windings
- shell type

Flux density at no load and OLTC in principal position (with two decimals) at 1.0 × Ur

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Limb</td>
<td>T, yoke</td>
<td>T, shell / side</td>
</tr>
<tr>
<td></td>
<td>limb</td>
<td>T</td>
</tr>
</tbody>
</table>

SOUND LEVELS

- Guaranteed max sound POWER level measured in accordance with IEC (tolerance +0 dB(A))
- reactor with /without coolers in operation
- cooling equipment including pumps (if separate)

- dB(A); LWA

BUSHINGS

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Line</th>
<th>Neutral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bushing type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- OIP = oil impregnated paper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- RIP = resin impregnated paper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- RIS = resin impregnated synthetic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- RM = resin molded</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- C = ceramic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- P = polymeric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulator type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- C = ceramic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated current</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Rated voltage</td>
<td>kV</td>
<td></td>
</tr>
<tr>
<td>Pollution class (I,II,III)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal creepage distance</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Oil level indicator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitance tap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bushing type designation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TEKNISK RIKTLINJE 2018-09-03 TR01-11E utg 9
CURRENT TRANSFORMERS

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Ratio (A)</th>
<th>Core</th>
<th>Accuracy class and rated output</th>
<th>$n / \text{sec. Resistance}$ $n = F_s$ or ALF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>primary/sec</td>
<td>No.</td>
<td>0,2S Fs</td>
<td>5P20</td>
</tr>
<tr>
<td>phase</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>phase</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>neutral</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>neutral</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Manufacturer
COOLING EQUIPMENT

<table>
<thead>
<tr>
<th>Type of cooling</th>
<th>ONAN</th>
<th>ONAF</th>
<th>OAF</th>
<th>ODAF</th>
<th>OWF</th>
<th>To be optimised by the supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooler location</td>
<td>☐ on the reactor</td>
<td>☐ on wall brackets</td>
<td>☐ on concrete shelf</td>
<td>☐ on separate support</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>☐ supports / brackets included</td>
<td>☐ others:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil system</td>
<td>☐ parallel groups on the oil side</td>
<td>☐ cooler(s) in each group</td>
<td>☐ pump(s) in each group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil type</td>
<td>☐ horizontally blowing, ☐ vertically blowing, ☐ vertical suction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan arrangement</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooler (Radiator) data</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>manufacturer</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>type designation</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>number of coolers (radiator)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cooling capacity per cooler at K</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average oil temperature rise</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oil pressure drop per cooler</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil pump data</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>manufacturer</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>type designation</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oil flow per pump</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>power requirement per pump</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil flow gauge</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type designation</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXTRA HEAT EXCHANGER

<table>
<thead>
<tr>
<th>Oil flow</th>
<th>l/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>☐</td>
</tr>
<tr>
<td>Type designation</td>
<td>☐</td>
</tr>
<tr>
<td>Valve size</td>
<td>mm</td>
</tr>
</tbody>
</table>
TEMPERATURE GAUGES AND TRANSMITTERS

<table>
<thead>
<tr>
<th>Winding</th>
<th>Top oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>centre phase</td>
<td>reading at the reactor</td>
</tr>
<tr>
<td>all windings</td>
<td>Pt100 transmitters included</td>
</tr>
<tr>
<td></td>
<td>transducers included</td>
</tr>
</tbody>
</table>

Power supply for transducers
- 110 V DC
- 220 V DC
- Others:

Other gauges and transmitters
- Oil temperature in and out of the forced oil coolers

<table>
<thead>
<tr>
<th>Gauge / Transmitter</th>
<th>Manufacturer</th>
<th>Type designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top oil thermometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt100 – top oil</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXPANSION SYSTEM

General
- Open air system
- With rubber membrane

Conservator location
- On the reactor
- On wall brackets
- On concrete shelf
- On separate support
- Brackets / support included

Volumes
- Oil volume in main tank and coolers (radiators) at –40°C
- Conservator oil volume

Gas and oil actuated relay
- With by-pass tube
- With inspection platform

Oil level indication
- At service level
- On the main conservator

Dehydrating breathers
- Maintenance-free
- Non maintenance-free

TEKNISK RIKTLINJE 2018-09-03 TR01-11E utg 9
14 TANK

General
☐ welded cover ☐ bolted cover ☐ pressure relief valve

Surface treatment

<table>
<thead>
<tr>
<th>Externally</th>
<th>Internally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrosivity category</td>
<td>☐ C3 ☐ C4 ☐ C4H ☐ C5 ☐ C5M</td>
</tr>
<tr>
<td>Primer paint</td>
<td></td>
</tr>
<tr>
<td>Cover paint</td>
<td></td>
</tr>
<tr>
<td>Cover paint colour</td>
<td></td>
</tr>
<tr>
<td>Total thickness</td>
<td>µm</td>
</tr>
</tbody>
</table>

15 DIMENSIONS & MASSES

Dimensions

<table>
<thead>
<tr>
<th>L × W × H</th>
<th>mm</th>
</tr>
</thead>
</table>

Masses

<table>
<thead>
<tr>
<th>Description</th>
<th>Total including oil</th>
<th>tons</th>
<th>-tank</th>
<th>tons</th>
</tr>
</thead>
<tbody>
<tr>
<td>-transport with oil</td>
<td>tons</td>
<td>-accessories</td>
<td>tons</td>
<td></td>
</tr>
<tr>
<td>-transport without oil</td>
<td>tons</td>
<td>-pressboard</td>
<td>tons</td>
<td></td>
</tr>
<tr>
<td>-active part (core + windings)</td>
<td>tons</td>
<td>-paper</td>
<td>tons</td>
<td></td>
</tr>
<tr>
<td>-copper</td>
<td>tons</td>
<td>-pressboard</td>
<td>tons</td>
<td></td>
</tr>
<tr>
<td>-oil</td>
<td>tons</td>
<td></td>
<td>tons</td>
<td></td>
</tr>
</tbody>
</table>

16 SITE INSTALLATION & TRANSPORT

Installation

☐ in open air ☐ within protective walls ☐ in rock cavity ☐ others:

-according to drawing No.

Erected on

☐ supports ☐ wheels ☐ skids ☐ oak planks ☐ others:

pcs of supports and pcs of wheels included in the supply

☐ anti-vibration plate

Rail gauge and support gauge

-Longitudinal	mm	alternatively
-Transversal | mm | with |

mm c/c between rail pairs ☐ with centrally located support wheel

Transport

☐ designed for railway transport on Swedish coach No. (Coach No.)

☐ designed for road transport

-transport dimensions | L × W × H | mm |

☐ impact recorder installed during transport

manufacturer | type | designation |
WINDING DESIGN

<table>
<thead>
<tr>
<th>Winding design</th>
<th>Winding material</th>
<th>0,2% proof stress (N/mm²)</th>
<th>Paper DP-number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Windings equipped with a high temperature varnish layer
- Thermally upgraded paper

AIR CORE INDUCTANCES

<table>
<thead>
<tr>
<th>Inductance line - neutral</th>
<th>Inductance line - neutral (mH/limb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air core inductance</td>
<td>mH/limb</td>
</tr>
</tbody>
</table>

CAPACITANCES

<table>
<thead>
<tr>
<th>Capacitance winding to ground</th>
<th>Capacitance winding to ground (nF/limb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-total capacitance</td>
<td>nF/limb</td>
</tr>
</tbody>
</table>

TEMPERATURE RISES

<table>
<thead>
<tr>
<th>Mean winding rise</th>
<th>Mean winding rise (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot spot winding rise</td>
<td>Hot spot winding rise (°C)</td>
</tr>
<tr>
<td>Mean oil rise</td>
<td>Mean oil rise (°C)</td>
</tr>
<tr>
<td>Top oil rise</td>
<td>Top oil rise (°C)</td>
</tr>
</tbody>
</table>

INRUSH CURRENTS

<table>
<thead>
<tr>
<th>Max terminal inrush current</th>
<th>Max terminal inrush current (kApeak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>peak inrush current</td>
<td>peak inrush current (kApeak)</td>
</tr>
<tr>
<td>half value time</td>
<td>half value time (s)</td>
</tr>
<tr>
<td>-at highest voltage for equipment</td>
<td>-at highest voltage for equipment</td>
</tr>
</tbody>
</table>

SURGE ARRESTERS

<table>
<thead>
<tr>
<th>Line</th>
<th>Neutral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bracket attachment</td>
<td>Bracket attachment (Line)</td>
</tr>
<tr>
<td>Bracket attachment and bracket</td>
<td>Bracket attachment and bracket (Line)</td>
</tr>
<tr>
<td>Bracket attachment, bracket and surge arresters</td>
<td>Bracket attachment, bracket and surge arresters (Line)</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Manufacturer (Line)</td>
</tr>
<tr>
<td>Type designation</td>
<td>Type designation (Line)</td>
</tr>
</tbody>
</table>
REQUESTED ALTERNATIVES

<table>
<thead>
<tr>
<th>Guideline Clause</th>
<th>IEC 60076-1 Clause</th>
<th>Requested alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td></td>
<td>Extended bushing turrets</td>
</tr>
<tr>
<td>11.9</td>
<td></td>
<td>Gas and oil actuated relay inspection platform</td>
</tr>
<tr>
<td>15.1.3</td>
<td></td>
<td>Accessory summary plate</td>
</tr>
<tr>
<td>15.1.4</td>
<td></td>
<td>Oil circuit diagram</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>Design review</td>
</tr>
<tr>
<td>20.2</td>
<td></td>
<td>Tests in service carried out by the client</td>
</tr>
<tr>
<td>20.2</td>
<td></td>
<td>Tests in service carried out by the supplier</td>
</tr>
<tr>
<td>10.1.3.h</td>
<td></td>
<td>Measurement of power taken by fans and oil pumps (if applicable)</td>
</tr>
</tbody>
</table>

TENDER ENCLOSURES

<table>
<thead>
<tr>
<th>Item</th>
<th>Tender reference No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factory description</td>
<td></td>
</tr>
<tr>
<td>Reference list</td>
<td></td>
</tr>
<tr>
<td>Failure record</td>
<td></td>
</tr>
<tr>
<td>Test resources</td>
<td></td>
</tr>
<tr>
<td>Dimension drawing</td>
<td></td>
</tr>
<tr>
<td>Transport drawing, railway</td>
<td></td>
</tr>
<tr>
<td>Circuit diagram</td>
<td></td>
</tr>
<tr>
<td>Test circuit, impulse tests</td>
<td></td>
</tr>
<tr>
<td>Test circuit, power frequency tests</td>
<td></td>
</tr>
<tr>
<td>Recommended priced spare parts</td>
<td></td>
</tr>
<tr>
<td>List of technical deviations</td>
<td></td>
</tr>
<tr>
<td>Time schedule</td>
<td></td>
</tr>
<tr>
<td>Valid type test reports</td>
<td></td>
</tr>
<tr>
<td>Quality management system</td>
<td></td>
</tr>
<tr>
<td>Quality management system certificate</td>
<td></td>
</tr>
<tr>
<td>Eco management system</td>
<td></td>
</tr>
<tr>
<td>Eco management system certificate</td>
<td></td>
</tr>
<tr>
<td>Environmental impact for the complete reactor delivery</td>
<td></td>
</tr>
<tr>
<td>Surface protection and painting system description</td>
<td></td>
</tr>
<tr>
<td>Insulating liquid specification</td>
<td></td>
</tr>
<tr>
<td>Completed insulating liquid questionnaire</td>
<td></td>
</tr>
<tr>
<td>Cable box cross section drawing</td>
<td></td>
</tr>
<tr>
<td>Cable termination description</td>
<td></td>
</tr>
<tr>
<td>Oil/air or cooler description</td>
<td></td>
</tr>
<tr>
<td>Oil/air or cooler data sheet</td>
<td></td>
</tr>
<tr>
<td>Principal gauge arrangement drawing</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>--</td>
</tr>
</tbody>
</table>

25 OTHERS
